Volume : 3, Issue : 7, JUL 2017




We consider a Finsler space equipped with a Generalized Conformal β- change of metric and study the Killing vector fields that correspond between the original Finsler space and the Finsler space equipped with Generalized Conformal-change of metric. Also, Killing vector fields of constant length correspond to isometries of constant displacement. Those in turn have been used to study homogeneity of Riemannian and Finsler quotient manifolds.


Finsler Space, Riemannian Geometry , Manifolds, Vector Fields.

Article : Download PDF

Cite This Article

Article No : 23

Number of Downloads : 551


1. C. Shibata, “On invariant tensors of β-changes of Finsler metrics,” Journal of Mathematics of Kyoto University ,vol.24,pp.163–188, 1984

2. G. Vincent, Les groupes lineaires nis sans points fixes. Commentarii Mathematici Helvetici, vol. 20 (1947), pp. 117-17

3. H. Izumi, “Conformal transformations of Finsler spaces,”Tensor,vol.31,pp.33–41,1977.

4. J. A. Wolf, Homogeneous manifolds of constant curvature. Commentarii Mathe-matici Helvetici, vol. 36 (1961), pp. 112-147.

5. J. A. Wolf, Sur la classication des varieties riemanniennes homogenes a courbure constante. C. R. Acad. Sci. Paris, vol. 250 (1960), pp. 3443-3445

6. M. Hashiguchi, “On conformal transformations of Finsler metrics,”Journal of Mathematics of Kyoto University ,vol.16,no.1, pp.25–50,1976

7. S. H. Abed, “Conformal-changes in Finsler spaces,”Proceedings of the Mathematical and Physical Society of Egypt,vol.86, pp.79–89,2008.

8. S.H.Abed,“Cartan connection associated with a conformal change in Finsler geometry,” Tensor, N. S. ,vol.70,pp.146–158, 2008.

9. U. P. Singh, V. N. John, and B. N. Prasad, “Finsler spaces preserving Killing vector fields,” Journal of Mathematical and Physical Sciences ,vol.13,pp.265–271,1979.

10. V. K. Kropina, “On projective two-dimensional Finsler spaceswith special metric,” TrudySeminarapoVektornomuiTenzornomu Analizu , vol. 11, pp. 277–292, 1961s

11. W. K. Cliord, Preliminary sketch of biquaternions. Proc. London Math. Soc., vol. 3 (1893), pp. 381-395.

12. W. K. Cliord, Vincent's conjecture on Cliord translations of the sphere. Commen-tarii Mathematici Helvetici, vol. 36 (1961), pp. 33-41.