Volume : 11, Issue : 2, FEB 2025
NATIONAL CONFERENCE ON “ROLE OF BIOTECHNOLOGY IN AGRICULTURE, CHEMICAL, PHYSICAL, AND ENVIRONMENTAL SCIENCES FOR SUSTAINABLE DEVELOPMENT” (NCB-2025)
ISOLATION AND PHYSICOCHEMICAL CHARACTERIZATION OF FENVALERATE DEGRADING BACTERIA FROM FENVALERATE CONTAMINATED AGRICULTURAL SOIL
NEELAM KAUSHIK*, SANGEETA KUMARI, SAUMYA THOLAT
Abstract
In this research, fenvalerate degrading bacteria were isolated from agricultural soil samples collected from Kaccholi, Gujarat, India. A total of 9 bacterial isolates were isolated and screened for fenvalerate degradation. Initial screening was done by growing the bacterial colonies on minimal salt media encompassing fenvalerate as the sole source of carbon. A biomass assay was conducted to identify the most efficient bacterial isolates capable of degrading fenvalerate. Out of 9 isolates that showed good biomass assay, one isolate (FDB-3) showing the best fenvalerate degrading potential was preferred for further study. Based on morphological and biochemical tests, isolate FDB-3 was recognized as Pseudomonas sp. The growth parameters were further refined under varying physicochemical conditions. The results showed that Pseudomonas sp. FDB-3 had maximum growth up to 72 hours with 94% of fenvalerate degradation. FTIR analysis of residual fenvalerate after 72 hours of incubation showed that FDB-3 was able to degrade fenvalerate. Therefore, the initial results obtained after optimization of culture conditions for biomass production and fenvalerate degradation indicated the possible utility of bacterial isolate FDB-3 for degradation of fenvalerate which can be utilized in the bioremediation of fenvalerate polluted soil.
Keywords
FENVALERATE, CONTAMINATION, BIOREMEDIATION, BACTERIAL ISOLATE, FTIR ANALYSIS.
Article : Download PDF
Cite This Article
-
Article No : 10
Number of Downloads : 1
References
1. Akbar, S., Sultan, S. and Kertesz, M. (2015). Determination of cypermethrin degradation potential of soil bacteria along with plants growth-promoting characteristics. Curr. Microbiol.70:75-84.
2. Andreotti, G., Freeman, LEB., Hou, L., Coble, J., Rusiecki, J., Hoppin, J.A. and Alavanja, M.C. (2009). Agricultural pesticide use and pancreatic cancer risk in the agricultural health study cohort. Int. J. Cancer. 124(10):2495-2500.
3. Antwi, F.B. and Reddy G.V.P. (2015). Toxicological effects of pyrethroids on non-target aquatic insects. Environ. Toxicol. Pharmacol. 40:915-923.
4. Brenner, D.J., Krieg, N.R., Staley, J.T. and Garrity, G.M. (eds., 2005). Bergey's Manual of Systematic Bacteriology, 2nd ed., vol. 2, parts A, B and C, Springer-Verlag, New York, NY.
5. Cyco´n, M., Zmijowska, A., Wójcik, M. and Piotrowska-Seget, Z. (2013). Biodegradation and bioremediation potential of diazinon-degrading Serratia marcescensto remove other organophosphorus pesticides from soils. J. Environ. Manage.117:7-16.
6. Cycon, M. and Piotrowska-Seget, Z. (2016). Pyrethroid-degrading microorganisms and their potential for the bioremediation of contaminated soils: a review. Front. Microbiol. 7:1463.
7. Damalas, C.A. (2009). Understanding benefits and risks of pesticide use. J. Sci. Res. Essay. 4(10): 945-949.
8. Das, R., Das, S.J. and Das, A.C. (2016). Effect of synthetic pyrethroid insecticides on N2-fixation and its mineralization in tea soil. Eur. J. Soil Biol. 74:9-15.
9. Decourtye, A., Devillers, J., Genecque, E., Le Menach, K., Budzinski, H., Cluzeau, S. and Pham-Delègue, M.H. (2005). Comparative sublethal toxicity of nine pesticides on olfactory learning performances of the honeybee Apis mellifera. Arch. Environ.Contam. Toxicol. 48:242-250.
10. Desneux, N., Decourtye, A. and Delpuech, J.M. (2007). The sub lethal effects of pesticides on beneficial arthropods. Ann. Rev. Entomol. 52:81-106.
11. Fulekar, M. (2009). Bioremediation of Fenvalerate by Pseudomonas aeruginosa in a scale up bioreactor. Rom. Biotechnol. Lett. 14(6):4900-4905.
12. Gangola, S., Bhatt, P., Kumar, A.J., Bhandari, G., Joshi, S., Punetha, A., Bhatt, K. and Rene, E.R. (2022). Biotechnological tools to elucidate the mechanism of pesticide degradation in the environment. Chemosphere. 296:133916.
13. Gill, K.K., Sandhu, H.S. and Kaur, R. (2015). Evaluation of lipid peroxidation and antioxidant status on fenvalerate, nitrate and their co-exposure in Bubalus bubalis. Pesticide Biochem. Physiol. 123:19-23.
14. Giri, S., Sharma, G.D. and Giri, A. (2002). Fenvalerate-induced chromosome aberrations and sister chromatid exchanges in bone marrow cells of mice in vivo.Mutat. Res. Genet. Toxicol. Environ. Mutagen. 520:125-132.
15. Guerrero Ramírez, J.R., Ibarra Muñoz, L.A., Balagurusamy, N., Frías Ramírez, J.E., Alfaro Hernández, L. and Carrillo Campos, J. (2023). Microbiology and Biochemistry of Pesticides Biodegradation. Int. J. Mol. Sci. 24(21):15969.
16. Kolaczinski, J.H. and Curtis, C.F. (2004). Chronic illness as a result of low-level exposure to synthetic pyrethroid insecticides: A review of the debate. Food Chem. Toxicol. 42:697-706.
17. Mahmoud, A.H., Darwish, N.M., Kim, Y.O., Viayaraghavan, P., Kwon, J.T., et al. (2020). Fenvalerate induced toxicity in Zebra fish, Danio rerio and analysis of biochemical changes and insights of digestive enzymes as important markers in risk assessment. J. King. Saud. Univ. Sci. 32:1569-1580.
18. Mulla, S.I., Ameen, F., Tallur, P.N., Bharagava, R.N., Bangeppagari, M., Eqani, S.A.M.A.S., et al., (2017). Aerobic degradation of fenvalerate by a Gram-positive bacterium, Bacillus flexus strain XJU-4. 3 Biotech. 7(5):320.
19. Nesser, G.A.A, Abdelbagi, A.O., Hammad, A.M.A., Tagelseed, M. and Laing, M.D.(2016) Levels of pesticides residues in the White Nile water in the Sudan. Environ. Monit. Assess. 188:374.
20. Selvam, A.D., Thatheyus, A.J. and Vidhya, R. (2013). Biodegradation of the Synthetic Pyrethroid, Fenvalerate by Pseudomonas viridiflava. American J. Microbiol.Res.1(2):32-38.
21. Smith, B.C. (2019), Organic Nitrogen Compounds IV: Nitriles spectroscopy. Spectroscopy. 34 (7):18-21.
22. Suman, S. and Tanuja. (2021). Isolation and characterization of a bacterial strain Enterobactercloacae (Accession No. KX438060.1) capable of degrading DDTs under aerobic conditions and its use in bioremediation of contaminated Soil. Microbiol. Insights.
23. Tamrakara, U., Gupta, V.K. and Pillaia, A.K. (2012). A spectrophotometric method for the determination of fenvalerate and cypermethrin in presence of each other. J. Anal. Methods Chem. 67:437-442.
24. Tang, J., Lei, D., Wu, M., Hu, Q. and Zhang, Q. (2020). Biodegradation and metabolic pathway of fenvalerate by Citrobacter freundii CD-9. AMB Express 10(1) :194
25. Tang, J., Liu, B., Shi, Y., Zeng, C-yi., Chen, T. ting., Zeng, L. and Zhang, Q. (2018). Isolation, identification, and fenvalerate-degrading potential of Bacillus licheniformis CY012. Biotechnol. Biotechnol. Equip. 32:574-582.
26. Triebskorn, K., Kohler, H. and Triebskorn, R. (2013). Wildlife ecotoxicology of pesticides: Can we track effects to the population level and beyond.Sci. 341(6147):759-765.
27. Yao, C., Huang, L., Li, C., Nie, D., Chen, Y., Guo, X., Cao, N., Li, X. and Pang, S. (2022). Exposure to fenvalerate and tebuconazole exhibits combined acute toxicity in zebrafish and behavioral abnormalities in larvae. Front. Environ. Sci. 10:975634.
28. Ye, X.Q., Xiong, K. and Liu, J. (2016). Comparative toxicity and bioaccumulation of fenvalerate and esfenvalerate to earthworm Eisenia fetida. J. Hazard. Mater. 310:82-88.
29. Yu, F.B., Shan, S.D., Luo, L.P., Guan, L.B. and Qin, H. (2013). Isolation and characterization of a Sphingomonas sp. strain F-7 degrading fenvalerate and its use in bioremediation of contaminated soil. J. Environ. Sci. Health B. 48:198-207.
30. Zhao, H., Geng, Y., Chen, L., Tao, K. and Hou, T. (2013). Biodegradation of cyper methrinbyanovel Catellibacterium sp. strain CC-5isolated from contaminated soil. Can. J. Microbiol.59:311-317.
