Volume : 11, Issue : 2, FEB 2025
NATIONAL CONFERENCE ON “ROLE OF BIOTECHNOLOGY IN AGRICULTURE, CHEMICAL, PHYSICAL, AND ENVIRONMENTAL SCIENCES FOR SUSTAINABLE DEVELOPMENT” (NCB-2025)
EXPLORING ALGAL DIVERSITY WITH SPECIFIC REFERENCE TO PHYSICO-CHEMICAL PARAMETERS IN LINGTI STREAM OF KANGRA DISTRICT, HIMACHAL PRADESH, INDIA
PRATIBHA, NITESH KUMAR*, VISHAL RANA, SAURABH SHARMA, MANJU SHARMA
Abstract
Algal diversity is a crucial bioindicator of aquatic ecosystem health, reflecting the impact of environmental factors on community composition. The present study explores the algal diversity in the Lingti Stream of Kangra District, Himachal Pradesh, India, with a specific focus on the relationship between algal distribution and physico-chemical parameters. This study investigates algal diversity and its relationship with physico-chemical parameters in the Lingti Stream, Kangra District, Himachal Pradesh, India. Algal samples were collected and identified, revealing the presence of five major taxonomic groups: Bacillariophyceae, Chlorophyceae, Cyanophyceae, Euglenophyceae, and Zygnematophyceae. Cyanophyceae and Chlorophyceae exhibited high species dominance, indicating nutrient-rich conditions. The study highlights the ecological significance of algal diversity. The findings provide valuable baseline data for future biomonitoring and conservation efforts in the region. Given the increasing anthropogenic pressures on freshwater resources, continuous monitoring, and sustainable management practices are recommended to preserve the ecological integrity of the Lingti Stream and similar freshwater habitats.
Keywords
ALGAL DIVERSITY, FRESHWATER ECOSYSTEM, PHYSICO-CHEMICAL PARAMETERS, WATER QUALITY.
Article : Download PDF
Cite This Article
-
Article No : 5
Number of Downloads : 0
References
1. Abu-Rezq, T. S., Al-Musallam, L., Al-Shimmari, J., & Dias, P. (1999). Optimum production conditions for different high-quality marine algae. Hydrobiologia, 403, 97-107.
2. Association, A. P. H. (1926). Standard methods for the examination of water and wastewater (Vol. 6). American Public Health Association.
3. Bales, R. C., Molotch, N. P., Painter, T. H., Dettinger, M. D., Rice, R., & Dozier, J. (2006). Mountain hydrology of the western United States. Water Resources Research, 42(8).
4. Boyd, C. E., Tucker, C. S., & Somridhivej, B. (2016). Alkalinity and hardness: critical but elusive concepts in aquaculture. Journal of the World Aquaculture Society, 47(1), 6-41.
5. Coffey, R., Paul, M. J., Stamp, J., Hamilton, A., & Johnson, T. (2019). A review of water quality responses to air temperature and precipitation changes 2: nutrients, algal blooms, sediment, pathogens. JAWRA Journal of the American Water Resources Association, 55(4), 844-868.
6. Datta, A., Marella, T. K., Tiwari, A., & Wani, S. P. (2019). The diatoms: from eutrophic indicators to mitigators. Application of Microalgae in Wastewater Treatment: Volume 1: Domestic and Industrial Wastewater Treatment, 19-40.
7. Diwyanjalee, G., & Premarathne, W. (2025). Spatial variation of water quality in Nilwala river of the Southern Province of Sri Lanka. Ceylon Journal of Science, 54(1).8. Ganai, A. H., & Parveen, S. (2014). Effect of physico-chemical conditions on the structure and composition of the phytoplankton community in Wular Lake at Lankrishipora, Kashmir. International Journal of Biodiversity and Conservation, 6(1), 71-84.
8. Ganai, A. H., & Parveen, S. (2014). Effect of physico-chemical conditions on the structure and composition of the phytoplankton community in Wular Lake at Lankrishipora, Kashmir. International Journal of Biodiversity and Conservation, 6(1), 71-84.
9. Hameed, I., Adeniyi, I., Adesakin, T., & Aduwo, A. (2019). Phytoplankton diversity and abundance in relation to physico-chemical parameters of Ifewara Reservoir, Southwestern Nigeria. World News of Natural Sciences, 24.
10. Islam, R., Faysal, S. M., Amin, R., Juliana, F. M., Islam, M. J., Alam, J., Hossain, M. N., & Asaduzzaman, M. (2017). Assessment of pH and total dissolved substances (TDS) in the commercially available bottled drinking water. IOSR Journal of Nursing and health Science, 6(5), 35-40.
11. Juneja, A., Ceballos, R. M., & Murthy, G. S. (2013). Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: a review. Energies, 6(9), 4607-4638.
12. Kaplan, L. A., & Bott, T. L. (1989). Diel fluctuations in bacterial activity on streambed substrata during vernal algal blooms: effects of temperature, water chemistry, and habitat. Limnology and Oceanography, 34(4), 718-733.
13. Kaushik, B. D. (1987). Laboratory methods for blue-green algae. Associated publishing company.
14. Kumar, P. S., & Thomas, J. (2019). Seasonal distribution and population dynamics of limnic microalgae and their association with physico-chemical parameters of river Noyyal through multivariate statistical analysis. Scientific reports, 9(1), 15021.
15. Matveev, V., & Robson, B. J. (2014). Aquatic food web structure and the flow of carbon. Freshwater Reviews, 7(1), 1-24.
16. McAllister, D. E., Hamilton, A. L., & Harvey, B. (1997). Global freshwater biodiversity: striving for the integrity of freshwater ecosystems. Sea wind: bulletin of Ocean Voice International; 11 (3).
17. McGlathery, K. J., Sundbäck, K., & Anderson, I. C. (2004). The importance of primary producers for benthic nitrogen and phosphorus cycling. In Estuarine Nutrient Cycling: The Influence of Primary Producers: The Fate of Nutrients and Biomass (pp. 231-261). Springer.
18. Michalak, I., & Messyasz, B. (2021). Concise review of Cladophora spp.: macroalgae of commercial interest. Journal of Applied phycology, 33(1), 133-166.
19. Mishra, A. P., Kumar, S., Patra, R., Kumar, A., Sahu, H., Chandra, N., Pande, C. B., & Alshehri, F. (2023). Physicochemical parameters of water and its implications on avifauna and habitat quality. Sustainability, 15(12), 9494.
20. Mukherjee, S., Rizvi, S. S., Biswas, G., Paswan, A. K., Vaiphei, S. P., Warsi, T., & Mitran, T. (2023). Aquatic Eco?systems Under Influence of Climate Change and Anthropogenic Activities: Potential Threats and Its Mitigation Strategies. Hydrogeochemistry of Aquatic Ecosystems, 307-331.
21. Ramachandra, T., & Solanki, M. (2007). Ecological assessment of lentic water bodies of Bangalore. The Ministry of Science and Technology, 25(96), 2.
22. Schneider, S. C., Kahlert, M., & Kelly, M. G. (2013). Interactions between pH and nutrients on benthic algae in streams and consequences for ecological status assessment and species richness patterns. Science of the Total Environment, 444, 73-84.
23. Sutton, L. N. (2020). Effects of Nutrient Overload and Environmental Conditions on Algal Bloom Formation: A Case Study of Water Sources in Eastern Kentucky Eastern Kentucky University].
24. Weenink, E. F., Luimstra, V. M., Schuurmans, J. M., Van Herk, M. J., Visser, P. M., & Matthijs, H. C. (2015). Combatting cyanobacteria with hydrogen peroxide: a laboratory study on the consequences for phytoplankton community and diversity. Frontiers in microbiology, 6, 714.
25. Wurtsbaugh, W. A., Paerl, H. W., & Dodds, W. K. (2019). Nutrients, eutrophication and harmful algal blooms along the freshwater to marine continuum. Wiley Interdisciplinary Reviews: Water, 6(5), e1373.
