Volume : 11, Issue : 2, FEB 2025
NATIONAL CONFERENCE ON “ROLE OF BIOTECHNOLOGY IN AGRICULTURE, CHEMICAL, PHYSICAL, AND ENVIRONMENTAL SCIENCES FOR SUSTAINABLE DEVELOPMENT” (NCB-2025)
URBAN HEAT ISLAND: A SYSTEMATIC LITERATURE REVIEW USING DPSIR MODEL
NIKITA*
Abstract
The dramatic surge in ecological footprint due to unmanaged and unbalanced urban growth portrays a harsh reality, illustrating how the environment is being exploited on a global scale. Urban Heat Island (UHI) emerges as a prominent challenge confronting cities worldwide, commonly attributed to extensive urbanization, burgeoning populations, and human activities. However, this prompts the question: Are these factors solely responsible for UHI, or are there other underlying causes? Employing the DPSIR framework, this paper analyzes root causes, their consequences, and interconnections to formulate effective responses. Cities profoundly impact their immediate surroundings, particularly in temperature regulation and water balance. Research reveals variations in UHI values among urban locales due to shifts in land use patterns. Through a literature review, this paper explores studies elucidating key drivers exerting pressure on the environment and necessitating interventions. The observed upward trend in UHI values is linked to the expansion of built-up areas and the decline in green cover. Escalating global temperatures and air pollution, driven by rapid unplanned urbanization, exacerbate human discomfort and climate dynamics. Although various methodologies have been employed, numerical modelling studies remain limited. Natural factors influence temperature dynamics, underscoring nature's intrinsic balance. However, human interference disrupts this equilibrium. Addressing this issue necessitates the implementation of effective solutions.
Keywords
URBAN HEAT ISLAND (UHI), DRIVER-PRESSURE-STATE-IMPACT-RESPONSE (DPSIR), LITERATURE REVIEW.
Article : Download PDF
Cite This Article
-
Article No : 4
Number of Downloads : 826
References
1. Adinna, E. N., Christian, E. I., & Okolie, A. T. (2009). Assessment of urban heat island and possible adaptations in Enugu urban using landsat-ETM. Journal of Geography and Regional Planning, 2(2), 30–36.
2. Akbari, H, Pomerantz, M., & Taha, H. (2001). Cool surfaces and shade trees to reduce energy use and improve air quality in urban areas. Solar Energy, 70(3), 295–310. https://doi.org/https://doi.org/10.1016/S0038-092X(00)00089-X
3. Akbari, Hashem. (2019). Cool Surfaces and Shade Trees to Reduce Energy Use and Improve Air Quality in Urban Areas COOL SURFACES AND SHADE TREES TO REDUCE ENERGY USE AND. (September). https://doi.org/10.1016/S0038-092X(00)00089-X
4. Algeciras, J., Tablada, A., & Matzarakis, A. (2018). Effect of asymmetrical street canyons on pedestrian thermal comfort in warm-humid climate of Cuba. Theoretical and Applied Climatology, 133. https://doi.org/10.1007/s00704-017-2204-8
5. Ali Toudert, F., & Mayer, H. (2006). Numerical Study on the effects of aspect ratio and orientation on an urban street canyon on outdoor thermal comfort in hot and dry climate. Building and Environment, 41, 94–108. https://doi.org/10.1016/j.buildenv.2005.01.013
6. Amin, M. H., Sajak, A. A. B., Jaafar, J., Husin, H. S., & Mohamad, S. (2022). Real Time Water Quality Monitoring System for Smart City in Malaysia. ASEAN Journal of Science and Engineering, 2(1), 47–64. https://doi.org/10.17509/ajse.v2i1.37515
7. Amirtham, L. R. (2016). Urbanization and its impact on Urban Heat Island Intensity in Chennai Metropolitan Area , India. (June). https://doi.org/10.17485/ijst/2016/v9i5/87201
8. Aslam, M. Y., Krishna, K. R., Beig, G., Tinmaker, M. I. R., & Chate, D. M. (2017). Seasonal Variation of Urban Heat Island and Its Impact on Air-Quality Using SAFAR Observations at Delhi , India. 294–305. https://doi.org/10.4236/ajcc.2017.62015
9. Athukorala, D., & Murayama, Y. (2021). Urban heat island formation in greater cairo: Spatio-temporal analysis of daytime and nighttime land surface temperatures along the urban-rural gradient. Remote Sensing, 13(7). https://doi.org/10.3390/rs13071396
10. Balany, F., Ng, A. W., Muttil, N., Muthukumaran, S., & Wong, M. S. (2020). Green infrastructure as an urban heat island mitigation strategy—a review. Water (Switzerland), Vol. 12. https://doi.org/10.3390/w12123577
11. Becker, F., & Zhao-Liang Li. (1995). Surface temperature and emissivity at various scales: definition, measurement and related problems. Remote Sensing Reviews, 12(3–4), 225–253. https://doi.org/10.1080/02757259509532286
12. Berdahl, P., & Bretz, S. E. (1997). Preliminary survey of the solar reflectance of cool roofing materials. Energy and Buildings, 25(2), 149–158. https://doi.org/https://doi.org/10.1016/S0378-7788(96)01004-3
13. Bidone, E. D. (2004). The use of DPSIR framework to evaluate sustainability in coastal areas. Case study: Guanabara Bay basin, Rio de Janeiro, Brazil. Regional Environmental Change, 4, 5–16. https://doiorg/10.1007/s10113-003-0059-2
14. Blocken, B. (2015). Computational Fluid Dynamics for urban physics: Importance, scales, possibilities, limitations and ten tips and tricks towards accurate and reliable simulations. Building and Environment, 91, 219–245. https://doi.org/https://doi.org/10.1016/j.buildenv.2015.02.015
15. Borbora, J., & Das, A. (2013). Summertime Urban Heat Island study for Guwahati City, India. Sustainable Cities and Society, 11. https://doi.org/10.1016/j.scs.2013.12.001
16. Bouyer, J., Musy, M., & Huang, Y. (2009). MITIGATING URBAN HEAT ISLAND EFFECT BY URBAN DESIGN: FORMS AND MATERIALS.
17. Bowen, R. E., & Riley, C. (2003). Socio-economic indicators and integrated coastal management. Ocean and Coastal Management, 46(3–4), 299–312. https://doi.org/10.1016/S0964-5691(03)00008-5
18. Bradley, P., & Yee, S. (2015). Using the DPSIR Framework to Develop a Conceptual Model: Technical Support Document Coral reef biocriteria View project Adaptation Design Tool guide View project. (August), 82.
19. Bretz, S., Akbari, H., & Rosenfeld, A. (1998). Practical issues for using solar-reflective materials to mitigate urban heat islands. Atmospheric Environment, 32(1), 95–101. https://doi.org/10.1016/S1352-2310(97)00182-9
20. Choi, Y. Y., Suh, M. S., & Park, K. H. (2014). Assessment of surface urban heat islands over three megacities in east asia using land surface temperature data retrieved from COMS. Remote Sensing, 6(6), 5852–5867. https://doi.org/10.3390/rs6065852
21. Clinton, N., & Gong, P. (2013). MODIS detected surface urban heat islands and sinks: Global locations and controls. Remote Sensing of Environment, 134, 294–304. https://doi.org/10.1016/j.rse.2013.03.008
22. Dimoudi, A., & Nikolopoulou, M. (2003). Vegetation in the urban environment: microclimatic analysis and benefits. Energy and Buildings, 35(1), 69–76. https://doi.org/https://doi.org/10.1016/S0378-7788(02)00081-6
23. Edmondson, J. L., Stott, I., Davies, Z. G., Gaston, K. J., & Leake, J. R. (2016). Soil surface temperatures reveal moderation of the urban heat island effect by trees and shrubs. Scientific Reports, 6, 1–8. https://doi.org/10.1038/srep33708
24. Elsayed, I. S. M. (2012). Mitigation of the urban heat island of the city of Kuala Lumpur, Malaysia. Middle East Journal of Scientific Research, 11(11), 1602–1613. https://doi.org/10.5829/idosi.mejsr.2012.11.11.1590
25. European Commission. (2001). Environmental pressure indicators for the EU. Retrieved from http://www.uni-man nheim.de/edz/pdf/eurostat/01/KS-36-01-677-EN-I-EN.pdf
26. Gabrielsen, P., & Bosch, P. (2003). Environmental Indicators: Typology and Use in Reporting. (August), 1–20.
27. Getter, K., & Rowe, D. (2006). The Role of Extensive Green Roofs in Sustainable Development. HortScience: A Publication of the American Society for Horticultural Science, 41, 1276. https://doi.org/10.21273/HORTSCI.41. 5.1276
28. Giupponi, C. (2002). From the DPSIR reporting framework to a system for a dynamic and integrated decision making process.
29. Gupta, J., Scholtens, J., Perch, L., Dankelman, I., Seager, J., Sánder, F., … Kempf, I. (2020). Re-imagining the driver–pressure–state–impact–response framework from an equity and inclusive development perspective. Sustainability Science, 15(2), 503–520. https://doi.org/ 10.1007/s11625-019-00708-6
30. Hamoodi, M., Corner, R., & Dewan, A. (2017). Thermophysical behaviour of LULC surfaces and their effect on the urban thermal environment. Spatial Science, VOL. 64, 111–130.
31. Heaviside, C., Macintyre, H., & Vardoulakis, S. (2017). The Urban Heat Island: Implications for Health in a Changing Environment. Current Environmental Health Reports, 4. https://doi.org/10.1007/s40572-017-0150-3
32. Heisler, G. M. (1990). Mean wind speed below building height in residential neighborhoods with different tree different tree densities. ASHRAE Transactions, 96(1), 1389–1396.
33. Herath, P., Halwatura, R., & Jayasinghe, G. (2017). Evaluation of green infrastructure effects on tropical Sri Lankan urban context as an urban heat island adaptation strategy. Urban Forestry & Urban Greening, 29. https://doi.org/10.1016/j.ufug.2017.11.013
34. Huang, W., Li, J., Guo, Q., Mansaray, L. R., & Li, X. (2013). A Satellite-Derived Climatological Analysis of Urban Heat Island over Shanghai during 2000 – 2013. 1–27. https://doi.org/10.3390/rs9070641
35. Hwang, Y. H., Lum, Q. J. G., & Chan, Y. K. D. (2015). Micro-scale thermal performance of tropical urban parks in Singapore. Building and Environment, 94(February), 467–476. https://doi.org/10.1016/j.buildenv.2015.10.003
36. Jabbar, H. K., Hamoodi, M. N., & Al-Hameedawi, A. N. (2023). Urban heat islands: a review of contributing factors, effects and data. IOP Conference Series: Earth and Environmental Science, 1129(1). https://doi.org/10.1088/ 1755-1315/1129/1/012038
37. Joshi, R., Raval, H., Pathak, M., Prajapati, S., Patel, A., Singh, V., & Kalubarme, M. H. (2015). Urban Heat Island Characterization and Isotherm Mapping Using Geo-Informatics Technology in Ahmedabad City, Gujarat State, India. International Journal of Geosciences, 06(03), 274–285. https://doi.org/10.4236/ijg.2015.63021
38. Khajuria, A., & Ravindranath, N. H. (2012). Climate Change Vulnerability Assessment: Approaches DPSIR Framework and Vulnerability Index. Journal of Earth Science & Climatic Change, 03(01). https://doi.org/10.41 72/2157-7617.1000109
39. Khamaia, D., Boudhiaf, R., Khechekhouche, A., & Driss, Z. (2022). Illizi city sand impact on the output of a conventional solar still. ASEAN Journal of Science and Engineering, 2(3), 267–272. https://doi.org/10.17509/ ajse.v2i3.42760
40. Kleerekoper, L., Taleghani, M., van den Dobbelsteen, A., & Hordijk, T. (2017). Urban measures for hot weather conditions in a temperate climate condition: A review study. Renewable and Sustainable Energy Reviews, 75, 515–533. https://doi.org/10.1016/j.rser.2016.11.019
41. Klok, E. J. (Lisette), & Kluck, J. (Jeroen). (2018). Reasons to adapt to urban heat (in the Netherlands). Urban Climate, 23, 342–351. https://doi.org/https://doi.org/10.1016/ j.uclim.2016.10.005
42. Kolokotroni, M., Giannitsaris, I., & Watkins, R. (2006). The effect of the London urban heat island on building summer cooling demand and night ventilation strategies. Solar Energy, 80(4), 383–392. https://doi.org/10.1016/ j.solener.2005.03.010
43. Kong, L., Lau, K., YUAN, C., Chen, Y., Xu, Y., Ren, C., & Ng, E. (2017). Regulation of outdoor thermal comfort by trees in Hong Kong. Sustainable Cities and Society, 31. https://doi.org/10.1016/j.scs.2017.01.018
44. Kotharkar, R., Ramesh, A., & Bagade, A. (2018). Urban Heat Island studies in South Asia: A critical review. Urban Climate, 24, 1011–1026. https://doi.org/https://doi.org/ 10.1016/j.uclim.2017.12.006
45. Kristensen, P. (2004). The DPSIR framework. A Comprehensive / Detailed Assessment of the Vulnerability of Water Resources to Environmental Change in Africa Using River Basin Approach., 1–10. Retrieved from http://enviro.lclark.edu:8002/rid=1145949501662_742777852_522/DPSIR Overview.pdf
46. Landsberg, H. E. (1981). The Urban Climate. Elsevier Science. Retrieved from https://books.google.co.in/ books?id=VyROAQAAIAAJ
47. Lawrence, E. O., Akbari, H., Gartland, L., & Konopacki, S. (1998). Measured Energy Savings of Light-Colored Roofs?: Results from Three California Demonstration Sites. (June).
48. Li, D., & Bou-Zeid, E. (2013). Synergistic interactions between urban heat islands and heat waves: The impact in cities is larger than the sum of its parts. Journal of Applied Meteorology and Climatology, 52(9), 2051–2064. https://doi.org/10.1175/JAMC-D-13-02.1
49. Li, K., & Lin, B. (n.d.). A New Urban Planning Approach for Heat Island Study at the Community Scale.
50. li, Z., Zhan, Q., & Lan, Y. (2017). Effects of the tree distribution and species on outdoor environment conditions in a hot summer and cold winter zone: A case study in Wuhan residential quarters. Building and Environment, 130. https://doi.org/10.1016/j.buildenv. 2017.12.014
51. Lysak, Z. A. (1974). Bioelectric activity of the resected stomach (Russian). Khirurgiya, 50(4), 62–67.
52. Marzban, F., Sodoudi, S., & Preusker, R. (2018). The influence of land-cover type on the relationship between NDVI–LST and LST-Tair. International Journal of Remote Sensing, 39, 1377–1398. https://doi.org/10.1080/0143 1161.2017.1402386
53. Maxim, L., Spangenberg, J. H., & O’Connor, M. (2009). An analysis of risks for biodiversity under the DPSIR framework. Ecological Economics, 69(1), 12–23. https://doi.org/10.1016/j.ecolecon.2009.03.017
54. Mills, G. (2006). The Climate of London by Luke Howard (1833). Iauc, (January 2006).
55. Mills, G. (2014). Urban climatology: History, status and prospects. Urban Climate, 10, 479–489. https://doi.org /https://doi.org/10.1016/j.uclim.2014.06.004
56. Mills, G. (2016). The Climate of London by Luke Howard (1833). (January).
57. Mirzaei, P. A., & Haghighat, F. (2010). Approaches to study Urban Heat Island - Abilities and limitations. Building and Environment, 45(10), 2192–2201. https://doi.org/10.1016/j.buildenv.2010.04.001
58. Mobaraki, A. (2012). Strategies for Mitigating Urban Heat Island Effects in Cities?: Case of Shiraz City Center. (February), 119.
59. Mohajerani, A., Bakaric, J., & Jeffrey-Bailey, T. (2017). The urban heat island effect, its causes, and mitigation, with reference to the thermal properties of asphalt concrete. Journal of Environmental Management, 197(February 2018), 522–538. https://doi.org/10.1016/ j.jenvman.2017.03.095
60. Mohammad, P., & Goswami, A. (2021). Quantifying diurnal and seasonal variation of surface urban heat island intensity and its associated determinants across different climatic zones over Indian cities. GIScience & Remote Sensing, 58, 1–27. https://doi.org/10.1080/15481 603.2021.1940739
61. Mohan, M., Kikegawa, Y., Gurjar, B. R., Bhati, S., Kandya, A., & Ogawa, K. (2012). Urban Heat Island Assessment for a Tropical Urban Airshed in India. (March). https://doi.org/ 10.4236/acs.2012.22014
62. Moomaw, W. R., Masino, S. A., & Faison, E. K. (2019). Intact Forests in the United States: Proforestation Mitigates Climate Change and Serves the Greatest Good. Frontiers in Forests and Global Change, 2(June). https://doi.org/10.3389/ffgc.2019.00027
63. Nakata-Osaki, C. M., De Souza, L. C. L., & Rodrigues, D. S. (2015). A GIS extension model to calculate urban heat island intensity based on urban geometry. CUPUM 2015 - 14th International Conference on Computers in Urban Planning and Urban Management.
64. Nandi, N., & Dede, M. (2022). Indonesian Journal of Science & Technology Urban Heat Island Assessment using Remote Sensing Data in West Java , Indonesia?: From Literature Review to Experiments and Analyses. 7(1), 105–116.
65. Ness, B., Anderberg, S., & Olsson, L. (2010). Structuring problems in sustainability science: The multi-level DPSIR framework. Geoforum, 41, 479–488. https://doi.org/ 10.1016/j.geoforum.2009.12.005
66. Niemeijer, D., & Groot, R. (2008). A conceptual framework for selecting environmental indicator sets. Ecological Indicators, 8, 14–25. https://doi.org/10.1 016/j.ecolind.2006.11.012
67. Nunez, M., & Oke, T. R. (1977). Energy Balance of an Urban Canyon. Journal of Applied Meteorology, 16(1), 11–19. https://doi.org/10.1175/1520-0450(1977)016 2.0.CO;2
68. Nuruzzaman, M. (2015). Urban Heat Island: Causes, Effects and Mitigation Measures - A Review. International Journal of Environmental Monitoring and Analysis, 3(2), 67. https://doi.org/10.11648/j.ijema.20150302.15
69. O’Malley, C., Piroozfar, P., Farr, E., & Pomponi, F. (2015). Urban Heat Island (UHI) mitigating strategies: A case-based comparative analysis. Sustainable Cities and Society, 19. https://doi.org/10.1016/j.scs.2015.05.009
70. Oke, T. (1982). The energetic basis of urban heat island. Quarterly Journal of the Royal Meteorological Society, 108, 1–24. https://doi.org/10.1002/qj.4971 0845502
71. Oke, T R. (1981). Canyon geometry and the nocturnal urban heat island: Comparison of scale model and field observations. Journal of Climatology, 1(3), 237–254. https://doi.org/https://doi.org/10.1002/joc.3370010304
72. Oke, T R. (2015). The Energy Balance of an Urban Canyon. 0450(December). https://doi.org/10.1175/1520- 0450(1977)016<0011
73. Oke, T R. (2016). City Size and the Urban Heat Island. 6981(April). https://doi.org/10.1016/0004-6981(73)90140-6
74. Oke, Tim R. (2006). Towards better scientific communication in urban climate. Theoretical and Applied Climatology, 84(1–3), 179–190. https://doi.org/10.1007/ s00704-005-0153-0
75. Okwen, R., Pu, R., & Cunningham, J. (2011). International Journal of Remote Remote sensing of temperature variations around major power plants as point sources of heat. (June 2015). https://doi.org/10.1080/ 01431161003774723
76. Park, C. Y., Lee, D. K., Krayenhoff, E., Heo, H. K., Hyun, J. H., Oh, K., & Park, T. (2019). Variations in pedestrian mean radiant temperature based on the spacing and size of street trees. Sustainable Cities and Society, 101521. https://doi.org/10.1016/j.scs.2019.101521
77. Perrings, C. (2005). Mitigation and Adaptation Strategies for the Control of Biological Invasions. Ecological Economics, 52, 315–325. https://doi.org/10. 1016/j.ecolecon.2004.08.001
78. Protection, U. S. E., & Programs, A. (n.d.). Reducing Urban Heat Islands?: Compendium of Strategies Urban Heat Island Basics.
79. Rahmat, A., & Mutolib, A. (2016). Comparison of Air Temperature under Global Climate Change Issue in Gifu city and Ogaki city, Japan. Indonesian Journal of Science and Technology, 1, 37–46. https://doi.org/10.17509/ ijost.v1i1.2212
80. Reed, M., Fraser, E., & Dougill, A. (2006). An adaptive learning process for developing and applying sustainability indicators with local communities. Ecological Economics, 59, 406–418. https://doi.org/10.1016/ j.ecolecon.2005.11.008
81. Ripley, E. A., Archibold, W., & Bretell, D. L. (1996). Temporal and spatial temperature patterns in Saskatoon. Weather, 51, 398–405. https://doi.org/10.1002/j.1477- 8696.1996.tb06171.x
82. Robitu, M., Inard, C., Groleau, D., & Musy, M. (2004). Energy balance study of water ponds and its influence on building energy consumption. Building Services Engineering Research and Technology, 25(3), 171–182. https://doi.org/10.1191/0143624404bt106oa
83. Roth, M. (2002). Effects of Cities on Local Climates. Retrieved from https://api.semanticscholar.org/Corpus ID :54899406
84. Roth, M., & Chow, W. T. L. (2012). A historical review and assessment of urban heat island research in Singapore. 33, 381–397. https://doi.org/10.1111/sjtg.12003
85. Rui, L., Buccolieri, R., Gao, Z., Gatto, E., & Ding, W. (2018). Study of the effect of green quantity and structure on thermal comfort and air quality in an urban-like residential district by ENVI-met modelling. Building Simulation, 12, 1–12. https://doi.org/10.1007 /s12273-018-0498-9
86. S., A., & J.K., R. (2022). Various Causes of Urban Heat Islands, effects and their Mitigation Measures for Urban Ecology – A Review. Ecology, Environment and Conservation, 28(3), 1489–1493. https://doi.org/ 10.53550/eec.2022.v28i03.055
87. Sailor, D. J. (2006). Mitigation of urban heat Islands - Recent progress and future prospects. 86th AMS Annual Meeting, (January 2006).
88. Sailor, D. J. (2014). Mitigation of urban heat Islands - Recent progress and future prospects. (December).
89. Salehi, E., & Zebardast, L. (2016). Application of Driving force- Pressure- State- Impact- Response (DPSIR) framework for integrated environmental assessment of the climate change in city of Tehran. Pollution, 2(1), 83–92. https://doi.org/10.7508/pj.2016.01.00
90. Santamouris, M., Paraponiaris, K., & Mihalakakou, G. K. (2007). Estimating the ecological footprint of the heat island effect over Athens, Greece. Climatic Change, 80, 265–276.
91. Sekar, N. A. (2020). DPSIR Assessment on Ecosystem Services.
92. Shahmohamadi, P., Che-Ani, A. I., Ramly, A. Bin, Maulud, K. N. A., & Mohd-Nor, M. F. I. (2010). Reducing urban heat island effects: A systematic review to achieve energy consumption balance. International Journal of Physical Sciences, 5, 626–636.
93. Skelhorn, C., Levermore, G., & Lindley, S. (2016). Impacts on Cooling Energy Consumption Due to the UHI and Vegetation Changes in Manchester, UK. Energy and Buildings, 122. https://doi.org/10.1016/j.enbuild.2016.01.035
94. Skelhorn, C., Lindley, S., & Levermore, G. (2014). The impact of vegetation types on air and surface temperatures in a temperate city: A fine scale assessment in Manchester, UK. Landscape and Urban Planning, 121, 129–140. https://doi.org/https://doi.org/10.1016/j.landurbplan.2013.09.012
95. Skondras, N. A., & Karavitis, C. A. (2015). Evaluation and comparison of DPSIR framework and the combined SWOT – DPSIR analysis (CSDA) approach: Towards embracing complexity. Global Nest Journal, 17(1), 198–209. https://doi.org/10.30955/gnj.001480
96. Steinecke, K. (1999). Urban climatological studies in the Reykjav??k subarctic environment, Iceland. Atmospheric Environment, 33(24), 4157–4162. https://doi.org/https:// doi.org/10.1016/S1352-2310(99)00158-2
97. Stocker, T., Plattner, G.-K., & Dahe, Q. (2014). IPCC Climate Change 2013: The Physical Science Basis − Findings and Lessons Learned. Geophysical Research Abstracts, 16, 2014–17003.
98. Svarstad, H., Petersen, L. K., Rothman, D., Siepel, H., & Wätzold, F. (2008). Discursive biases of the environmental research framework DPSIR. Land Use Policy, 25(1), 116–125. https://doi.org/https://doi.org/10.1016/j.landusepol.2007.03.005
99. Taha, H. (1997). Urban climates and heat islands: albedo, evapotranspiration, and anthropogenic heat. Energy and Buildings, 25(2), 99–103. https://doi.org/ https://doi.org/10.1016/S0378-7788(96)00999-1
100. Theeuwes, N. E., Steeneveld, G. J., Heusinkveld, R. J. R. B. G., & Holtslag, A. A. M. (2012). 197?: Mitigation of the urban heat island effect using vegetation and water bodies. 2011–2013. Retrieved from https://edepot.wur.nl/ 218899
101. Thomas, G., Sherin, A. P., Ansar, S., & Zachariah, E. J. (2014). Analysis of Urban Heat Island in Kochi, India, Using a Modified Local Climate Zone Classification. Procedia Environmental Sciences, 21(June), 3–13. https://doi.org/ 10.1016/j.proenv.2014.09.002
102. Timm, A., Ouellet, V., & Daniels, M. (2020). Swimming through the urban heat island: Can thermal mitigation practices reduce the stress? River Research and Applications, 36(10), 1973–1984. https://doi.org/ 10.1002/rra.3732
103. Toparlar, Y., Blocken, B., Maiheu, B., & van Heijst, G. J. F. (2017). A review on the CFD analysis of urban microclimate. Renewable and Sustainable Energy Reviews, 80(September 2016), 1613–1640. https://doi.org/ 10.1016/j.rser.2017.05.248
104. Tscherning, K., Helming, K., Krippner, B., Sieber, S., & y Paloma, S. (2012). Does research applying the DPSIR framework support decision making? Land Use Policy, 29, 102–110. https://doi.org/10.1016/j.landusepol.2011.05.0 09
105. Tsoka, S. (2017). Investigating the Relationship Between Urban Spaces Morphology and Local Microclimate: A Study for Thessaloniki. Procedia Environmental Sciences, 38, 674–681. https://doi.org/ 10.1016/j.proenv.2017.03.148
106. Tzavali, A., Paravantis, J. P., Mihalakakou, G., Fotiadi, A., & Stigka, E. (2015). Urban heat island intensity: A literature review. Fresenius Environmental Bulletin, 24(12B), 4537–4554.
107. USA EPA. (2008). Reducing Urban Heat Islands: Green Roofs. Heat Island Reduction Activities, 1–23. Retrieved from http://www.epa.gov/hiri/resources/compendium .htm%5Cnpapers2://publication/uuid/30F84843-04A3-4904-A3DF-AC06915537C0
108. Veena, K., Parammasivam, K. M., & Venkatesh, T. N. (2020). Urban Heat Island studies: Current status in India and a comparison with the International studies. Journal of Earth System Science, 129(1). https://doi.org/ 10.1007/s12040-020-1351-y
109. Voogt, J. A., & Oke, T. R. (2003). Thermal remote sensing of urban climates. Remote Sensing of Environment, 86(3), 370–384. https://doi.org/10.1016/S0034- 4257(03)00079-8
110. Weston, K. J. (1988). Boundary layer climates (Second edition). By T. R. Oke. Methuen. 1987. Pp. 435 + xvi. £39.95 hardback; £14.95 paperback. Quarterly Journal of the Royal Meteorological Society, 114(484), 1568. https://doi.org/https://doi.org/10.1002/qj.49711448412
111. Wood, A., & Halsema, A. (2008). Scoping agriculture-wetland interactions. Towards a sustainable multiple-response strategy.
112. Yang, L., Qian, F., Song, D. X., & Zheng, K. J. (2016). Research on Urban Heat-Island Effect. Procedia Engineering, 169, 11–18. https://doi.org/10.1016/ j.proeng.2016.10.002
113. Yang, X., Zhao, L., Bruse, M., & Meng, Q. (2013). Evaluation of a microclimate model for predicting the thermal behavior of different ground surfaces. Building and Environment, 60, 93–104. https://doi.org/10.1016 /j.buildenv.2012.11.008
114. Yee, S. H., Bradley, P., Fisher, W. S., Perreault, S. D., Quackenboss, J., Johnson, E. D., … Murphy, P. A. (2012). Integrating human health and environmental health into the DPSIR framework: A tool to identify research opportunities for sustainable and healthy communities. EcoHealth, 9(4), 411–426. https://doi.org/ 10.1007/s10393-012-0805-3
115. Zhou, D., Zhao, S., Liu, S., Zhang, L., & Zhu, C. (2014). Surface urban heat island in China’s 32 major cities: Spatial patterns and drivers. Remote Sensing of Environment, 152, 51–61. https://doi.org/https://doi.org/10.1016/j.rse.201 4.05.017