

ROLE OF MICROORGANISMS IN SUSTAINABLE AGRICULTURE—A REVIEW

CHANDRA GURNANI*	PRINCIPAL, PULKIT COLLEGE FOR HIGHER EDUCATION.		
VIKRAM KUMAR	EDUCATION DEPARTMENT GOVT. OF HARYANA.		
MEENAKSHI KISHAN	ASSISTANT PROFESSOR, CH.BALLURAM GODARA GOVT. GIRLS COLLEGE.		
NISHA CHUGH	ASSISTANT PROFESSOR, CH.BALLURAM GODARA GOVT. GIRLS COLLEGE.		
MANISH	STUDENT, DAV MAHAVIDYALAYA.		
JASHANDEEP KAUR	STUDENT, DAV MAHAVIDYALAYA.		
KANTA	STUDENT, DAV MAHAVIDYALAYA.		

ABSTRACT:

Microorganisms play a crucial role in sustainable agriculture by enhancing soil fertility, promoting plant growth, and protecting crops from diseases, which minimizes the need for synthetic fertilizers and pesticides. This paper examines the various roles of microorganisms, including nitrogen-fixing bacteria, mycorrhizal fungi, and plant growth-promoting rhizobacteria, in contributing to agricultural sustainability. It also highlights how microbial inoculants can improve soil health, crop yields, and resilience against biotic and abiotic stressors, thereby fostering a more sustainable agricultural system.

KEYWORDS:

-

INTRODUCTION

Traditional agricultural practices have relied heavily on inputs, including fertilizers, chemical pesticides, fungicides, and herbicides, to protect crops from pathogens and to enhance yields. While these chemicals effectively control pests and boost productivity, they are also associated with significant environmental consequences, such as soil degradation, air and water pollution, and harmful impacts on non-target organisms. The use of these chemicals has been linked to the decline of aquatic species like fish, pollinators like bees ,and various plants, posing an increasing threat to biodiversity, including soil microbial communities of bacteria and fungi . Moreover, chemicals disrupt essential soil processes, altering physical properties like texture, porosity, and permeability, which, in turn, interfere with nutrient cycles, particularly of phosphorus and nitrogen, leading to a simplified and less resilient soil microbiome.

As global population growth drives up the demand for both the quantity and quality of food, the need for sustainable agricultural practices becomes increasingly urgent. Bioinoculants—specifically, biofertilizers that boost yields and biopesticides that protect crops—are emerging as promising tools for sustainable agriculture. Bioinoculants contain living or dormant microbes known as plant growth-promoting microorganisms (PGPM) that not only enhance plant growth and yield but also aid in remediating degraded soils [11,12,13]. Compared to chemical-based methods, bioinoculants offer a more cost-effective and eco-friendly approach [14].

The development of bioinoculants begins with isolating and identifying beneficial microorganisms, followed by rigorous testing to confirm their efficacy in promoting plant growth under both laboratory and field conditions. Ensuring their safety for other organisms, including animals and native soil microbiomes, is also critical [15]. Among the most well-studied PGPMs are mycorrhizal fungi and *Rhizobium* bacteria, though other plant growth-promoting microbes span diverse taxa, including various bacteria, fungi, and algae [16].

To clearly present the mechanisms by which plant growth-promoting fungi (PGPF) and bacteria (PGPB) enhance various aspects of plant growth are presented in Table 1

E-ISSN NO: 2455-295X | IMPACT FACTOR VALUE: 5.983 VOLUME: 11 | ISSUE: 2 | SPECIAL ISSUE FEBRUARY-2025

Microorganism Type	Role in Sustainable Agriculture	Examples	References
Nitrogen-fixing bacteria	Convert atmospheric nitrogen into forms usable by plants, reducing the need for synthetic nitrogen fertilizers.	Rhizobium, Azotobacter	Sylvia et al. (2005) [17]
Phosphate-solubilizing bacteria	Solubilize inorganic phosphorus, making it available for plant uptake and enhancing soil fertility.	Bacillus, Pseudomonas	Vessey (2003) [18]
Plant growth-promoting rhizobacteria (PGPR)	Promote plant growth by producing phytohormones, enhancing nutrient uptake, and increasing stress resilience.	Azospirillum, Pseudomonas	Bashan et al. (2014) [19]
Mycorrhizal fungi	Enhance nutrient absorption (especially phosphorus) and improve plant resistance to stress, contributing to soil health.	Arbuscular mycorrhizal fungi	Smith & Read (2008) [20]
Biocontrol agents	Suppress plant pathogens by producing antimicrobial compounds, reducing the need for chemical pesticides	Trichoderma, Bacillus	Harman et al. (2004) [21]
Decomposer microorganisms	Break down organic matter, recycling nutrients back into the soil and maintaining soil structure and fertility.	Soil fungi and bacteria	van Elsas et al. (2007) [22]
Endophytic microorganisms	Live within plant tissues, providing growth benefits and protection from pathogens, enhancing resilience and yield.	Enterobacter, Serratia	Glick (2012) [23]
Plant-associated fungi	Aid in decomposition, nutrient cycling, and disease suppression, enhancing soil biodiversity and health.	Penicillium, Aspergillus	Mendes et al. (2011) [24]
Biofertilizers (General)	Enrich the soil with nutrients, improve soil structure, and increase plant yield in an eco-friendly manner.	Rhizobium, Azospirillum	Adesemoye et al. (2009) [25]
Biofertilizers (General)	Enrich the soil with nutrients, improve soil structure, and increase plant yield in an eco-friendly manner.	Rhizobium, Azospirillum	Adesemoye et al. (2009) [26]

DISCUSSION:

Microbial inoculants, or bioinoculants, are increasingly recognized as essential tools in sustainable farming due to their role in enhancing soil fertility, promoting plant growth, and reducing dependence on chemical inputs. Comprised of beneficial bacteria, fungi, and actinomycetes,

these inoculants can establish symbiotic relationships with plants, aiding in nutrient acquisition and disease resistance. For example, nitrogen-fixing bacteria like *Rhizobium* convert atmospheric nitrogen into ammonia, making nitrogen available to plants and reducing the need

E-ISSN NO: 2455-295X | IMPACT FACTOR VALUE: 5.983 VOLUME: 11 | ISSUE: 2 | SPECIAL ISSUE FEBRUARY-2025

for synthetic nitrogen fertilizers (Vessey, 2003)rus-solubilizing bacteria, such as Bacillus and Pseudomonas, release organic acids that convert insoluble phosphorus into plant-accessible forms, enhancing root development and overall growth (Glick, 2012) .Inoculants like Rhizobium, Azospirillum, and arbuscular mycorrhizal fungi (AMF) are commonly used in sustainable agriculture. *Rhizobium* bacteria, for example, form nodules on the roots of legumes, converting atmospheric nitrogen into forms that plants can readily absorb, enhancing yields without chemical nitrogen fertilizers. Similarly. phosphorus-solubilizing bacteria, such as Bacillus and *Pseudomonas*, release organic acids that convert insoluble phosphorus in the soil into forms accessible to plants, promoting stronger root systems and overall growth.

In adnutrient acquisition, microbial inoculants boost plant resilience by suppressing soil pathogens. For instance, fungi like *Trichoderma* produce antibiotics and enzymes that protect plants from root pathogens, reducing the necessity for chemical pesticides and fostering healthier crops (Harman et al., 2004) . Mycorrhizal funing arbuscular mycorrhizal fungi (AMF), also increase drought tolerance and support nutrient absorption, further contributing to plant health and yield (Smith & Read, 2008) .

Microbial inoculants thith the goals of sustainable agriculture by promoting natural soil processes, enhancing biodiversity, and maintaining soil health. These benefits support an environmentally friendly alternative to conventional agriculture practices, which often result in soil degradation and pollution due to chemical runoff (Adesemoye & Kloepper, 2009) . By integrating microbial inoculans can reduce chemical dependency, improve crop productivity, and support long-term sustainability, which are critical to meeting the food needs of a growing global population while preserving environmental health.

RESULTS:

The study highlights the diverse and significant contributions of microorganisms to sustainable agriculture, underscoring their potential to enhance crop productivity, soil health, and environmental sustainability. The key findings of this review emphasize the multifaceted roles of various plant growth-promoting microorganisms (PGPMs), including nitrogen-fixing bacteria, phosphate-solubilizing bacteria, mycorrhizal fungi, and other beneficial microbes. These microorganisms positively impact agriculture by:

- 1. **Enhancing Nutrient Availability and Uptake**: Nitrogen-fixing bacteria, like *Rhizobium*, convert atmospheric nitrogen into bioavailable forms, reducing reliance on synthetic nitrogen fertilizers. Phosphate-solubilizing bacteria, such as *Bacillus* and *Pseudomonas*, increase phosphorus availability, supporting strong root and shoot growth.
- 2. Promoting Plant Growth and Development:

PGPMs aid in plant development by producing phytohormones, which enhance root and shoot elongation, improve germination rates, and increase biomass production. Microorganisms like *Azospirillum* and arbuscular mycorrhizal fungi (AMF) are known to foster plant growth and resilience against various stressors.

- 3. **Strengthening Plant Resilience**: Microbial inoculants boost plant resilience to biotic and abiotic stress. For instance, *Trichoderma* and other biocontrol agents suppress plant pathogens through antimicrobial compound production, thereby decreasing the need for chemical pesticides. Mycorrhizal fungi improve drought resistance and nutrient uptake, further bolstering plant health.
- 4. **Maintaining Soil Health and Biodiversity**: The application of microbial inoculants helps improve soil structure, fertility, and microbial biodiversity. Decomposer microorganisms and endophytic microbes aid in nutrient cycling and organic matter breakdown, preserving the soil's physical properties and ecosystem function.
- 5. **Supporting Environmental Sustainability**: The use of microbial inoculants aligns with sustainable agriculture goals, as they reduce dependence on chemical fertilizers and pesticides, minimize environmental pollution, and promote long-term soil fertility.

In conclusion, this paper underscores the potential of microbial inoculants as essential, eco-friendly tools in sustainable agriculture. Their implementation can contribute to increased food security, better crop yields, and a reduction in agriculture's environmental footprint, presenting a viable pathway toward more resilient and sustainable farming systems.

REFERENCES

- 1. Al-Ani, L.K.T. *Trichoderma*: Beneficial role in sustainable agriculture by plant disease management. In *Plant Microbiome: Stress Response*; Egamberdieva, D.,
- 2. Ahmad, P., Eds.; Springer: Singapore, 2018; Volume 5, pp. 105–126.
- 3. Weltje, L.; Simpson, P.; Gross, M.; Crane, M.; Wheeler, J.R. Comparative acute and chronic sensitivity of fish and amphibians: A critical review of data. *Environ. Toxicol. Chem.* **2013**, *32*, 984–994.
- 4. Mukherjee, R.K.; Kumar, V.; Roy, K. Chemometric modeling of plant protection products (PPPs) for the prediction of acute contact toxicity against honey bees (*A. mellifera*): A 2D-QSAR approach. *J. Hazard. Mater.* **2022**, *423*, 127230.

E-ISSN NO: 2455-295X | IMPACT FACTOR VALUE: 5.983 VOLUME: 11 | ISSUE: 2 | SPECIAL ISSUE FEBRUARY-2025

- 5. Bruni, I.; Gentili, R.; de Mattia, F.; Cortis, P.; Rossi, G.; Labra, M. A multi-level analysis to evaluate the extinction risk of and conservation strategy for the aquatic fern *Marsilea quadrifolia* L. in Europe. *Aquat. Bot.* **2013**, *111*, 35–42. 6.
- 6. Matarczyk, J.A.; Willis, A.J.; Vranjic, J.A.; Ash, J.E. Herbicides, weeds and endangered species: Management of bitou bush (*Chrysanthemoides monilifera* ssp. rotundata) with glyphosate and impacts on the endangered shrub. *Pimelea spicata*. *Biol. Conserv.* **2002**, *108*, 133–141.
- 7. Bikrol, A.; Saxena, N.; Singh, K. Response of *Glycine max* in relation to nitrogen fixation as influenced by fungicide seed treatment. *Int. J. Biochem. Biotechnol.* **2020**, *9*, 1–5.
- 8. Santosh, M.S.; Rodrigues, T.F.; Ferreira, E.; Megias, M.; Nogueira, M.A.; Hungria, M. Method for recovering and counting viable cells from maize seeds inoculated with *Azospirillum brasilense*. *J. Pure Appl. Microbiol.* **2020**, *14*, 195–204.
- 9. Zilli, J.É.; Ribeiro, K.G.; Campo, R.J.; Hungria, M. Influence of fungicide seed treatment on soybean nodulation and grain yield. *Rev. Bras. Cienc. Solo* **2009**, *33*, 917–923.
- 10. Streletskii, R.; Astaykina, A.; Krasnov, G.; Gorbatov, V. Changes in bacterial and fungal community of soil under treatment of pesticides. *Agronomy* **2022**, *12*, 124.
- 11. Santoyo, G.; Guzmán-Guzmán, P.; Parra-Cota, F.I.; de los Santos-Villalobos, S.; del Carmen Orozco-Mosqueda, M.; Glick, B.R. Plant growth stimulation by microbial consortia. *Agronomy* **2021**, *11*, 219.
- 12. Chaudhary, T.; Dixit, M.; Gera, R.; Shukla, A.K.; Prakash, A.; Gupta, G.; Shukla, P. Techniques for improving formulations of bioinoculants. *3 Biotech.* **2020**, *10*, 199.
- 13. Romano, I.; Ventorino, V.; Pepe, O. Effectiveness of plant beneficial microbes: Overview of the methodological approaches for the assessment of root colonization and persistence. *Front. Plant Sci.* **2020**, *11*, 6.
- 14. Maitra, S.; Brestic, M.; Bhadra, P.; Shankar, T.; Praharaj, S.; Palai, J.B.; Shah, M.M.R.; Barek, V.; Ondrisik, P.; Skalický, M.; et al. Bioinoculants-natural biological resources for sustainable plant production. *Microorganisms* **2022**, *10*, 51.
- 15. Basu, A.; Prasad, P.; Das, S.N.; Kalam, S.; Sayyed, R.Z.; Reddy, M.S.; Enshasy, H. Plant growth promoting rhizobacteria (PGPR) as green bioinoculants: Recent developments, constraints, and prospects. *Sustainability*

2021, 13, 1140.

- 16. Martínez-Hidalgo, P.; Maymon, M.; Pule-Meulenberg, F.; Hirsch, A.M. Engineering root microbiomes for healthier crops and soils using beneficial, environmentally safe bacteria. *Can. J. Microbiol.* **2019**, *65*, 91–104.
- 17. Cai, F.; Chen, W.; Wei, Z.; Pang, G.; Li, R.; Ran, W.; Shen, Q. Colonization of *Trichoderma harzianum* strain SQR-T037 on tomato roots and its relationship to plant growth, nutrient availability and soil microflora. *Plant Soil* **2015**, *388*, 337–350.
- 18. Sylvia, D. M., et al. (2005). *Principles and Applications of Soil Microbiology*.
- 19. Vessey, J. K. (2003). Plant growth-promoting rhizobacteria as biofertilizers. *Plant and Soil*.
- 20. Bashan, Y., et al. (2014). Advances in plant growth-promoting bacterial inoculant technology. *Soil Biology and Biochemistry*.
- 21. Smith, S. E., & Read, D. J. (2008). Mycorrhizal Symbiosis.
- 22. Harman, G. E., et al. (2004). Trichoderma species-opportunistic, avirulent plant symbionts. *Nature Reviews Microbiology*.
- 23. Van Elsas, J. D., et al. (2007). Modern Soil Microbiology.
- 24. Glick, B. R. (2012). Plant growth-promoting bacteria: mechanisms and applications. *Scientifica*.
- 25. Mendes, R., et al. (2011). Deciphering the rhizosphere microbiome for disease-suppressive bacteria. *Science*.
- 26. Adesemoye, A. O., et al. (2009). Use of microbial inoculants in sustainable agriculture. *Field Crops Research*.
- 27. Herrmann, L., & Lesueur, D. (2013). Challenges of formulation and quality of biofertilizers for successful inoculation. *Applied Microbiology and Biotechnology*.
- 28. Vessey, J. K. (2003). Plant growth-promoting rhizobacteria as biofertilizers. *Plant and Soil*.
- 29. Glick, B. R. (2012). Plant growth-promoting bacteria: mechanisms and applications. *Scientifica*.
- 30. Harman, G. E., et al. (2004). Trichoderma species-opportunistic, avirulent plant symbionts. *Nature Reviews Microbiology*.
- 31. Smith, S. E., & Read, D. J. (2008). Mycorrhizal Symbiosis.
- 32. Adesemoye, A. O., & Kloepper, J. W. (2009). Plant-microbe interactions in enhanced fertilizer-use efficiency. *Applied Microbiology and Biotechnology*.