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ABSTRACT 

A fast iterative method is presented for computing the determinant of any square matrix by applying the succession an algorithm of 

matrix order condensation. The process is very simple and straightforward.  It is found that the total number of multiplication/division 

operations needed to compute the determinant of a square matrix is less than 2/3 of that required for the product of two square matrices 

of an identical size. 

 

Keywords: Determinant, Matrix Inversion, Matrix Multiplication, Recursive Algorithm, Matrix Order Condensation, Matrix Order 

Expansion. 

Introduction 

An iterative algorithm of matrix order condensation is developed for computing the determinant of any general square matrix. The 

process is very simple and straightforward and involves only simple matrix oprations. 

Computer listings in MATLAB are provided, and typical numerical examples are given to show the merit of the approach presented. 

Formulation 

The determinant of any given square matrix [M] can be evaluated as follows by an iterative algorithm relying upon matrix order 

condensation. 

At the beginning of the iterative process, k = 0, the given square matrix [M] of order N x N is denoted as  [M] = [M0].   Then in the k-th 

step of the following process, k = 1, 2, .... , K,  the matrix [Mk-1] of order 1 1k kn n  is given by 

 1  
k k

k

k k

P u
M

v W


 
  
 

, 

which contains four sub-matrices, Pk , uk , vk , and Wk, of order k km m , k km n , k kn m , and k kn n , respectively, where 

1k k kn n m   ,  1 1k k k Kn m m m     , and  0n N , 1K Kn m  , 0Kn  . 

The condensed matrix [Mk] is thus directly computed from these four matrices, provided that the pivot matrix is Pk is not singular, 

  1

k k k k kM W v P u    . 

Then we have 

     1det det detk k kM P M   . 

The determinant of this given matrix [M] = [M0] is therefore determined after performing a total of K process steps: 

       1 2det det det det KM P P P    . 

Proof     The proof of the algorithm is quite simple and straightforward.  Since 

 
1

1 1 1

1 1

k k k k k k k

k

k k k k k k k k k k

P u I P I P u
M

v W v P I W v P u I



  

 

      
        

       
, 

it follows that 

     1det det det det det
k k k

k k k

k k k

P u P
M P M

v W M


   
      

   
. 
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This completes the proof of the algorithm. 

The algorithm can be further modified so that all sub-matrices are not necessarily solid matrices. The pivot matrix Pk, which is formed 

from the selected rows and columns manually in every iteration step, need not to be located along the diagonal. In fact the modified 

algorithm is equivalent to the original algorithm with the given matrix after the rows and columns are rearranged. The desired results are 

then obtained from the computed results after restoring both rows and columns into their original orders. 

Computer routine 

Two computer programs, derived from the algorithm and its modification, are presented as MATLAB routines. 

(1) 

 function detM = det_m(M) 

 %  Finding determinant of a square matrix 

 %  by Condensation --- along diagonal. 

  

      Z = [ ]; 

  for k = 1:length(M), 

      nm = length(M); M, 

      m = input('Pivot size = '); 

   if m > nm, m = nm;  end; 

      n = nm-m; 

      P = M([1:m],[1:m]);  

      V = M([m+1:nm],[1:m]); 

      U = M([1:m],[m+1:nm]); 

      W = M([m+1:nm],[m+1:nm]); 

      nM = [P,U;V,W]; 

      iP = inv(P); 

      dP = det(P); 

       k,n,m,nM,iP,dP,  disp(' '); 

      Z = [Z,dP]; 

   if nm <= m,  break, end;  

      M = W-V*iP*U; 

  end; 

      detM = prod(Z); Z, 

(2) 

 function detM = det_pq(M) 

 %  Finding determinant of a square matrix 

 %  by Condensation --- select rows & cols. 

  

      Z = [ ]; 
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  for k = 1:length(M), 

      nm = length(M); M, 

      pq = input('[rows;cols] =  '); 

      p = sort(pq(1,:));  

      q = sort(pq(2,:)); 

      m = length(p); 

      n = nm-m; 

      e = (-1)^sum(pq(:));  

      W = M(setdiff(1:nm,p),setdiff(1:nm,q)); 

      V = M(setdiff(1:nm,p),q); 

      U = M(p,setdiff(1:nm,q)); 

      P = M(p,q); 

      nM = [P,U;V,W]; 

      iP = inv(P); 

      dP = det(P); 

       k,n,m,nM,iP,  disp(' '); 

      Z = [Z,dP*e]; 

   if nm <= m,  break, end;  

      M = W-V*iP*U; 

  end;         

      detM = prod(Z); Z,  

Examples 
 

For a given matrix [M] of order 6x6, 

 

 

1 5 8 3 4 3

2 5 4 3 0 1

3 2 5 0 7 4

2 4 1 2 0 5

6 2 4 7 1 6

2 7 9 1 3 2

M

  
 
  
 
  

  
 

    
 
    

 

 

its determinant det [M ]
 
may be obtained in 4 different schemes by applying the derived MATLAB routines: 

 

(1)    Run   detM = det_m(M),   with inputs:     m  =    1,   1,   1,   1,   1,   1. 
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k = 1,     m1 = 1,    n1 = 5 

    1 1

0

1 1

1 5 8 3 4 3

2 5 4 3 0 1

3 2 5 0 7 4

2 4 1 2 0 5

6 2 4 7 1 6

2 7 9 1 3 2

P u
M M

v W

  
 
  
 
   

     
   

    
 
    

 

k = 2,     m2 = 1,    n2 = 4 

  2 21

1 1 1 1 1

2 2

15 12 3 8 7

17 19 9 19 5

6 17 8 8 11

32 44 25 23 12

3 25 5 11 8

P u
M W v P u

v W



    
 
   
  
        
  
    
     

 

k = 3,     m3 = 1,    n3 = 3 

  3 31

2 2 2 2 2

3 3

5.4 5.6 9.9333 2.9333

12.2 6.8 4.8 8.2

18.4 18.6 5.9333 2.9333

22.6 4.4 9.4 6.6

P u
M W v P u

v W



  
 

             
 
   

 

k = 4,     m4 = 1,    n4 = 2 

  4 41

3 3 3 3 3

4 4

5.8519 17.6420 14.8272

0.4815 27.9136 7.0617

19.0370 32.1728 18.8765

P u
M W v P u

v W



 
             
     

 

k = 5,     m5 = 1,    n5 = 1 

 

 

k = 6,     m6 = 1,    n6 = 0 

     1

5 5 5 5 5 6 23.7912M W v P u P       

   6M   

Then 

  1 2 3 4 5 6det 298410.M P P P P P P         

(2)    Run   detM = det_m(M),    with inputs:     m  =    3,   3 

k = 1,     m1 = 3,    n1 = 3 

    1 1

0

1 1

1 5 8 3 4 3

2 5 4 3 0 1

3 2 5 0 7 4

2 4 1 2 0 5

6 2 4 7 1 6

2 7 9 1 3 2

P u
M M

v W

  
 
  
 
   

     
   

    
 
    

 

k = 2,     m2 = 3,    n2 =0  

  5 51

4 4 4 4 4

5 5

26.4620 5.8418

25.2194 29.3586

P u
M W v P u

v W


   

        
    
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   1

1 1 1 1 1 2

5.8519 17.6420 14.8272

0.4815 27.9136 7.0617

19.0370 32.1728 18.8765

M W v P u P

 
          
   

 

   2M   

Then 

     1 2det det det 298410.M P P     

(3)   Run  detM = det_pq(M),   inputs: [rows; cols] = [4;3], [2;3], [3;3], [3;1],[2;1],[1;1]. 

 

   0

1 5 8 3 4 3

2 5 4 3 0 1

3 2 5 0 7 4
   

2 4 1 2 0 5

6 2 4 7 1 6

2 7 9 1 3 2

M M

  
 
  
 
  

   
 

    
 
    

 

 

k = 1,    1 1[r ; c ] [4; 3]  

1 1

1 1

1 2 4 2 0 5

8 1 5 3 4 3

4 2 5 3 0 1

5 3 2 0 7 4

4 6 2 7 1 6

9 2 7 1 3 2

P u

v W

 
 

 
 
   

   
    

    
 
    

 

   1 1

1 11 det 1.
r c

z P


     

  1

1 1 1 1 1

17 37 13 4 37

10 11 5 0 21

13 18 10 7 21

14 14 15 1 14

16 29 19 3 43

M W v P u

    
 
  
 
        
 
    
  

 

 

k = 2,     2 2[r ; c ] [2; 3]  

2 2

2 2

5 10 11 0 21

13 17 37 4 37

10 13 18 7 21

15 14 14 1 14

19 16 29 3 43

P u

v W

   
 
   
  
     
  
    
  

 

   2 2

2 21 det 5.
r c

z P


     
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  1

2 2 2 2 2

9 8.4 4 17.6

7 4 7 21

16 19 1 49

22 12.8 3 36.8

M W v P u

 
 


        
 
  

 

 

k = 3,     
3 3[r ; c ] [3; 3]  

3 3

3 3

1 16 19 49

4 9 8.4 17.6

7 7 4 21

3 22 12.8 36.8

P u

v W

  
 
       

 
  

 

   3 3

3 31 det 1.
r c

z P


     

  1

3 3 3 3 3

55 84.4 178.4

119 137 364

26 44.2 110.2

M W v P u

  
        
  

 

 

k = 4,    4 4[r ; c ] [3; 1]  

4 4

4 4

26 44.2 110.2

55 84.4 178.4

119 137 364

P u

v W

 
   

     
    

 

   4 4

4 41 det 26.
r c

z P


     

  1

4 4 4 4 4

9.1 54.7154

65.3 140.3769
M W v P u

 
        

 

 

k = 5,    5 5[r ; c ] [2; 1]  

5 5

5 5

65.3 140.3769

9.1 54.7145

P u

v W

  
        

 

   5 5

5 51 det 65.3.
r c

z P


     

   1

5 5 5 5 5 35.153M W v P u      

 

k = 6,    6 6[r ; ] [1; 1]c   

   6 35.135P   

   6 6

6 61 det 35.135.
r c

z P


     

   6M   
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Then, 

  1 2 3 4 5 6det 298410.M z z z z z z         

 

(4)    Run    detM = det_pq(M),    with inputs:  [rows; cols] = [2 4 5; 1 4 5], [1; 2], [1 2; 1 2 ]. 

 

   0

1 5 8 3 4 3

2 5 4 3 0 1

3 2 5 0 7 4
   

2 4 1 2 0 5

6 2 4 7 1 6

2 7 9 1 3 2

M M

  
 
  
 
  

   
 

    
 
    

 

 

k = 1,    1 1[r ; c ] [2 4 5; 14 5]  

1 1

1 1

2 3 0 1 3 4

2 2 0 3 0 7

6 7 1 2 1 3

5 4 1 5 8 3

4 1 5 2 5 4

2 4 6 7 9 2

P u

v W

   
 


 
     

   
    
  
 
    

 

   1 1

1 11 det 10.0
r c

z P
 

     

  1

1 1 1 1 1

73.4 27.5 84.9

113.2 59.5 161.7

39.0 13.0 66.0

M W v P u

  
        
  

 

 

k = 2,    2 2[r ; c ] [1; 2]  

2 2

2 2

27.5 73.4 84.9

59.5 113.2 161.7

13.0 39.0 66.0

P u

v W

  
   

    
    

 

   2 2

2 21 det 27.5
r c

z P
 

     

  1

2 2 2 2 2

45.6109 21.9927

4.3018 25.8655
M W v P u

 
        

 

 

k = 3,    3 3[r ; ] [12; 12]c   

 3

45.6109 21.9927

4.3018 25.8655
P

 
  

 
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   3 3

3 31 det 1085.1
r c

z P
 

     

   3M   

Then 

  1 2 3det 298410.M z z z      

Conclusion 

A simple method has been developed for finding the determinant of a given square matrix of high order. The process involves successive 

applications of an algorithm for matrix order condensation. The algorithm may be modified to resolve the problem in the event that the 

pivot matrix becomes singular during any iteration step. The sign of the computed result must be adjusted regarding to the swapping of 

the rows and columns of the pivot matrix at each process step. 

When compared to various approaches available in the literature [1]-[4], the process presented is very compact, efficient, and involves 

only the simple elementary arithmetical operations of addition, subtraction, multiplication, and division. It is shown that, no matter what 

size of pivot matrix chosen at each step, the total number of multiplication/division operations needed to compute the determinant of a 

given N x N matrix is found to be 
3 22 4 

3 3
1N N N   , where N 

3 
is the total number of multiplication operations required to 

compute the product of any two N x N matrices. 

If we are interested in both determinant and inverse of any given square matrices, the algorithm of matrix order expansion as found in [7] 

may be useful. 
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