
Research Paper E-ISSN NO : 2455-295X | VOLUME : 2 | ISSUE : 11 | NOV 2016

I N T E R N A T I O N A L E D U C A T I O N A L S C I E N T I F I C R E S E A R C H J O U R N A L

38

DESIGN AND DEVELOPMENT OF VERIFICATION ENVIRONMENT

TO VERIFY AHB2APB BRIDGE PROTOCOL USING UVM

NARRA VENKATA KRISHNA 1 | N.G.N. PRASAD 2 | G.S.S. PRASAD 3

1 M. Tech Student in Kakinada Institute of Engineering and technology, Kakinada, East Godavari District, India.

2
 Asst. professor, Kakinada Institute of Engineering and technology, Kakinada, East Godavari District, India.

3
 HOD, Dept. of ECE, Kakinada Institute of Engineering and technology, Kakinada, East Godavari Dist., India.

ABSTRACT

The AMBA AHB is for high-performance, high clock frequency system modules. The AHB acts as the high-performance backbone

system bus. AHB supports the efficient connection of processors. The AMBA APB is optimized for low power consumption and

interface reduced complexity to support peripheral functions. In this project functions of the AHB2APB Bridge protocol by writing the

code in VERILOG and simulating it in XILINX ISE. In this project, we verify the all functions of Bridge protocol by writing verification

code in UVM with different test cases. The code coverage and functional coverage and functional verification of the Bridge RTL design

is 100% covered by using QUESTASIM.

Keywords: AHB, APB, QUESTASIM, XILINX ISE, AHB2APB Bridge, Verilog, UVM, Coverage, FPGA.

I. INTRODUCTION

The AHB bus protocol is designed to be used with a

multiplexer interconnection scheme. Using this scheme all bus

masters drive the address and control signal indicating the

transfer to perform and the arbiter determines which master has

its control signals and address routed to all of the slaves. The

central decoder is also required to control the data read and

signal response multiplexer, which selects the appropriate

signals from the slaves that is involved in the transfer. The APB

should be used to connected to any peripherals which are low

bandwidth and do not need high performance of a pipelined bus

interface.

The BUS Communication may be done in different ways.

(A) Transfer type: - Indicates type of the current transfer,

which can be NON-SEQUENTIAL, SEQUENTIAL,

IDLE or BUSY.

(B) Transfer direction: - When write HIGH this signal

indicates a write transfer and when write LOW a read

transfer.

(C) Transfer size: - Indicates this size of the transfer,

which is typically byte (8-bit), half word (16-bit) or

word (32-bit). The protocol allows larger transfer sizes

up to a maximum of 1024 bits.

(D) Burst type: - Indicates if the transfer forms the part of a

burst. Four and eight and sixteen beat bursts are

supported and the burst may be either incrementing or

wrapping.

II. AHB2APB BRIDGE

General architecture of AHB2APB Bridge consists of five main

building blocks:

 AHB Master

 AHB2APB Bridge

 AHB Interface

 APB FSM Controller

 APB Interface

Architecture of AHB2APB Bridge

1. AHB Master: The bus master is able to initiate read

and write operations by providing an address and

control information. One bus master is allowed to

actively use the bus at any one time.

2. AHB Arbiter: The bus arbiter ensures that one bus

master at a time is allowed to initiate data transfers.

Even though the arbitration protocol is fixed, any

arbitration algorithm, such as highest priority and fair

access can be implemented depending on the

application requirements. An AHB would include one

arbiter, although this would be trivial in single bus

master systems.

3. AHB decoder: The AHB decoder is used to decode

address of each transfer and provide a select signal for

the slave that is involved transfer single centralized

Research Paper E-ISSN NO : 2455-295X | VOLUME : 2 | ISSUE : 11 | NOV 2016

I N T E R N A T I O N A L E D U C A T I O N A L S C I E N T I F I C R E S E A R C H J O U R N A L

39

decoder is required in all AHB implementations.

4. APB Interface: A bus slave responds to a read and a

write operation within a given address-space range.

The bus slave signals back to the active master the

success, failure and waiting of the data transfer

address and data that received from the bridge suitably

used for data transaction from bridge to this module

and vice versa depending whether it is a write and a

read operation. These modules contain block for

P_CLK generation, which is distributed to AHB2APB

bridge module, and the P_CLK generated obviously

used in this module also.

5. AHB2APB Bridge: Out of all modules present, this

module is simplest and also very larger. All the signals

are taken as wire to interconnect the various modules

present in the top module. In the module, all the three

modules namely

 AHB Master

 AHB2APB bridge

 APB interface

These modules are all instantiated used Positional assignments

which is again simple compared naming assignment which is

little tedious.

6. FSM Controller:

III. UVM (UNIVERSAL VERIFICATION

METHODOLOGY)

The Universal Verification Methodology was introduced in

December 2009, by the technical Subcommittee of Accellera.

UVM use Open Verification Methodology and its foundation.

Accellera released version UVM 1.0 EA on May 17th 2010.

UVM Class Library provides the building blocks needed

quickly develop well-constructed as well as reusable

verification components and test environments. It uses system

Verilog as language. All three of simulation vendors

(Synopsys, Cadence and Mentor) supports UVM today which

was not a case with other verification methodology. Today,

more and more logic being integrated on the single chip so

verification of it a very challenging task. More than 70 % of the

time is spent on the verification of the chip. So, it is a need of an

hour to have common verification methodology that provides

base classes and framework to construct reusable verification

environment. UVM provides that.

In this paper, all terminology related to UVM is introduced

along with sample example. In first phase UVM components

are introduced. In second phase, some of features related to

UVM are introduced and final phase small environment is built

using UVM from the scratch.

IV. UVM Testbench architecture

The following subsections describes the components of a

verification environment.

 Data Item

 Driver

 Sequencer

 Monitor

 Agents

 Environment

 Data Item:

Data items are basically input to the device under test.

All the transfers done between different verification

components in UVM is done through transaction

object. Network packets and instructions for processor

are some examples of transactions. From top level test

many data items are generate and applied to DUT so

Research Paper E-ISSN NO : 2455-295X | VOLUME : 2 | ISSUE : 11 | NOV 2016

I N T E R N A T I O N A L E D U C A T I O N A L S C I E N T I F I C R E S E A R C H J O U R N A L

40

by intelligently randomizing the data items object we

can check corner case and Maximize the coverage on

the device under test.

 Driver:

Driver as the name suggest, drive DUT signals. It

basically receives the transaction object from

sequencer and converts it to pin level activity. So, for

example it can generate read and write signal, write

address and data to be transferred. It is active part of

the verification logic.

 Sequencer:

Sequencer is the component which the sequence will

run. The DUT needs to be applied a sequence of

transaction to test its behaviour. So, sequence of

transaction generated and it is applied to driver

whenever it demands by sequencer.

 Monitor:

A monitor is passive element of verification

environment. It just samples the DUT signal from the

interface but does not drive them. It collects the pin

information, packages it in form of packet and then

transfers it to scoreboard and components for

coverage information.

 Agent:

Agent is basically container. It contains driver,

monitor and sequencer. The Driver and sequencer are

connected as agent. Agent has two modes of

operation: passive and active. In active mode drives

the signal to DUT. So, driver and sequencer are

instantiated active mode. In passive mode, it just

samples the DUT signals does not drive them. So only

monitor is instantiated passive mode. Normally there

is one agent interface like AHB or APB.

 Scoreboard:

Scoreboard is verification component that check the

response from the DUT against the expected response.

So, keeps track of how many times the response is

matched with the expected response and how many

times failed.

 Environment:

Environment is the top of the test bench architecture. it

will be contained one or more agents depend on the

design. If more than one agents are there then it will

connect in this component. Agents are also connected

to another component like scoreboard in this

component.

V. RESULTS AND DISCUSSION

Fig. Bridge top Schematic Diagram from

Synthesis

The Bridge is carried out for the functional

verification using the UVM techniques for both the

read as well as write operation. The functional

verification of the RTL design is the Bridge is yields

the complete code and functional coverage.

Functional Verification of the Bridge Using UVM As

verification methodology plays important phase in the

circuit design. The read operation of the Bridge is

carried out in XILINX for the RTL design and the

verification methodologies are carried out using

Questasim 10.2c. The design is carried out using in

Verilog and the verification is carried out in UVM.

The Bridge is set up as DUT the functional

verification and the code coverage is obtained for

100%.

Fig. simulation showing Bridge Functional

Verification for write operation

Research Paper E-ISSN NO : 2455-295X | VOLUME : 2 | ISSUE : 11 | NOV 2016

I N T E R N A T I O N A L E D U C A T I O N A L S C I E N T I F I C R E S E A R C H J O U R N A L

41

Fig. simulation showing Bridge Functional

Verification for read operation.

VI. COVERAGE REPORT

VII. CONCLUSION

In this we have designed and verified AHB2APB Bridge using

Verilog and UVM techniques using Questasim. The code

coverage is obtained for RTL design and 100% code coverage

and functional coverage is extracted. The methodology

provides the complete coverages of RTL design so as to acquire

the fault free Protocol design of Bridge. So that can be

implemented in real time system. This can be further

implemented for the ASIC implementation and SOC

Applications.

REFERENCES

[1] K.Cho et al, “Reusable Platform Design Methodology

For SOC Integration And Verification”, Proceedings of

ISOCC 2008, pp. I-78- I-81, Nov. 2008

[2] D.Gajski et al, “Essential Issues for IP Reuse”,

Proceedings of ASP-DAC, pp.37-42, Jan. 2000

[3] ARM Limited AMBA specification

[4] opencores.org

[5] Xilinx ISE Synthesis and Verification Design Guide

[6] Jaehoon Song, Student member, IEEE, Hyunbean Yi,

Member,IEEE, Juhee Han, and Sungju Park, Member,

IEEE,” An Efficient SOC Test Technique by Reusing

On/Off Chip Bus Bridge”IEEE Transcactions on Circuits

And Systems-I: Regular Papers, Vol,56, No.3,

March2009.

 Copyright© 2016, IESRJ. This open-access article is published under the terms of the Creative Commons

Attribution-NonCommercial 4.0 International License which permits Share (copy and redistribute the material in any medium or

format) and Adapt (remix, transform, and build upon the material) under the Attribution-Non Commercial terms.

