
Research Paper E-ISSN No : 2455-295X | Volume : 2 | Issue : 6 | June 2016

1 1 1 1
Rahul R. Nair | Rohan E. Mhetre | Avinash D. Zagade | Ganesh S. Thorat

Dept. of Computer Engineering, JSPM's Imperial College of Engineering and Research, Wagholi.

57International Educational Scientific Research Journal [IESRJ]

I. INTRODUCTION
We have seen an era where people have no time to calculate their expenditure and
earnings. But most of us would like to keep a track of their expenditure and earn-
ings so as to plan their savings accordingly. As when people have no time to do it
themselves, but they need it. So who on earth will give their earning history to
someone else to keep a track? This question arises in minds of most of us. We also
have a culture of using internet for our daily use activities. We are involved into
internet in such an extent that we find it difficult to go out and buy our food from
outside instead ordering our food online would be a better choice. So can't we use
internet to be a friend who helps us in keeping a track of expenditure and earnings
so as to simple our life? This project report presents a formal model of a portal
that connects all the banks in a specified country and provides these services to
the users of the application in that country without compromising in security.

This illustration aims to get an idea about different security algorithms which can
be used for a system which connects the different banks to access the
transactional data (i.e. credited and debited) of the user. A user may have many
different bank accounts for which the user may and it difficult to keep a track of
all the transactions he had performed from different accounts and so the user
finds it difficult to organize his expenditures and earnings at the end of the month.
The proposed system organizes all together expenditures and earnings of the user
from various accounts.

The main purpose of this system is to provide the security to user sensitive data.
This can be achieved applying security to three different connections of namely,
User-API, API-Bank, API-Database using different algorithms like DDAS,
Spring Security, Hash Coding, etc.

II. Proposed System
The architecture of DDAS is made of several components each with a well-
defined purpose to ensure the fast processing of a request[1]. Application
requests can either require a large number of objects or huge data size for storage
and retrieval operations continuously; therefore we need to efficiently isolate the
system's functions when it comes to computation, storage, selection and
metadata management [2].

A. Data Back-end Storage System (BlobSeer)
This is the actual BlobSeer storage system. It only communicates with the
DDAS' extended client through read and write requests to store and retrieve spe-
cific objects in their serialized form therefore aggregating the distributed data
[5]. For write operations, the meta- data manager returns the meta-information to
identify the location of the written objects, while for read operations it returns the
serialized object based on the meta-information input by the DDAS extended cli-
ent. As it is the storage system for the DDAS it is not viewed to the client and is
encapsulated from the user[3].

B. DDAS
This component acts as the mediator between BlobSeer and all other data-
management applications that require fast and reliable storage and retrieval of
data or simply the client or user. It is mainly divided into two layers: the metadata
management layer and the extended BlobSeer client. The upper layer uses the
Collect Gate module to update its scheme-object mappings and performs the
operations requested: either storing the serialized object into BlobSeer or retriev-
ing the mapping of an aggregation scheme from BlobSeer and delivering it to the
client. For an input aggregation scheme, the DDAS will request from Collect
Gate the list of object keys that fit the aggregation scheme [4]. Using the keys or
the existing aggregation scheme the service will send to the extended client the
meta-information based on which the retrieval of data from BlobSeer will be
made and the client gets the data.

C. Collect Gate
This module is represented by a database of rules and properties that, depending
on the application, generates expansion and aggregation schemes that fit one or
more objects thereby improving performance of the system which in turn is use-
ful to the user. Furthermore, Collect Gate creates lists of object keys that map to a
scheme to send them to the DDAS in order to fulfill new requests [4]. This model
therefore gives more flexibility compared to others. The role of this component is
to perform quick searches and selections based on a few properties therefore
increasing speed. As storage is required for new objects collect gate manages that
and gives the required retrieval.

D. Data Flow
This block is used when a request is made by a client to store data or retrieve a set
of objects based on an aggregation scheme. For a new object the DDAS queries
Collect Gate for all the existing schemes that fit the new object. For read and
write BlobSeer is responsible as BloobSeer gets the read operation it searches it
in Blob and does the necessary action for write it executes the write operation and
returns the corresponding meta-information to the DDAS. For an aggregation
operation it requires a client application to input an aggregation scheme in its
request to the DDAS. If this aggregation scheme is not already in the metadata
management layer of the DDAS, a request to Collect Gate is made to determine
the list of object keys that match this scheme. After Collect Gate returns the list or
if the scheme already exists in the DDAS, the extended BlobSeer client will read
the objects based on the meta-information of each object from the object cata-
logue or meta-information mapped to the existing aggregations scheme [4].
BlobSeer will then read all requested objects and return them to the DDAS.
Finally the DDAS will perform any reduction operations that are included in the
aggregation scheme. The list of objects will then be transmitted to the client
application in the same format as it was first stored.

ABSTRACT

There are very less systems in the Application Market which connects the different banks to access the transactional data (i.e. credited and debited) of the user. A user
may have many different bank accounts for which the user may find it difficult to keep a track of all the transactions he had performed from different accounts and so
the user finds it difficult to organize his expenditures and earnings at the end of the month. The proposed system organizes all together expenditures and earnings of the
user from various accounts.

Distributed Data Aggregation Service (DDAS): as the name itself suggests that it is nothing but aggregation of data. In simple words, the data that is present at different
locations are merged together in order to achieve greater speed, security and flexibility. There are several systems for database management and one of them is Distrib-
uted data aggregation service (DDAS) system which is relying on Blobseer. It is found that it provides a high level performance in aspects such as data storage as a Blob
(Binary large objects) and data aggregation. For complicated analysis and instinctive mining of scientific data, Blobseer serve as a repository backend. In this paper we
review the different aspects regarding Distributed data aggregation service (DDAS) and different approaches and case study regarding it and in which aspects it is use-
ful over the globe. The main purpose of this system is to provide the security to user sensitive data. This can be achieved applying security to three different connections
of the system namely, User-API, API-Bank, API-Database using different algorithms like DDAS, Hash Coding, etc.

KEY WORDS: Distributed Data, Blobseer, BLOB (Binary Large Objects), Aggregation.

BANKING�ANALYSIS�PORTAL

Copyright© 2016, IESRJ. This open-access article is published under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License which permits Share (copy and redistribute the material in
any medium or format) and Adapt (remix, transform, and build upon the material) under the Attribution-NonCommercial terms.

Research Paper E-ISSN No : 2455-295X | Volume : 2 | Issue : 6 | June 2016

Figure 1. DDAS system architecture [4]

III. Algorithm
J2EE frameworks have relentlessly moved into application frameworks, which
target to provide coherent programming in all tiers and thereby amalgamate the
application stack. The Spring Framework is the foremost product in this space,
with embracing comparable to that of Hibernate. Spring provides an alternative
to EJB in many applications—for example, delivering declarative transaction
management to any POJO. The Spring approach has proven to deliver excellent
results in many kinds of projects, from small Web applications to large enterprise
applications. Collectively, these products are referred to as lightweight contain-
ers to distinguish them from traditional J2EE approaches. By decoupling a POJO
model from J2EE APIs, which are hard to stub at test time, lightweight containers
greatly simplify unit testing. It's possible to unit test in a plain JUnit environment,
without any need to deploy code to an application server or to simulate an appli-
cation server environment. Given the increased and deserved popularity of test-
driven development, this has been a major factor in lightweight frameworks' pop-
ularity.

Using J2EE we have designed banking analysis application which works as fol-
lows:-

Step 1: Customer creates account in multiple bank applications that maintains its
transaction details.

Step 2: The same customer registers itself in banking analysis application.

Step 3: The customer adds his/her different bank account details that has to be
aggregated into the banking analysis application.

Step 4: If the number of bank accounts added by the customer is greater than 0
then the bank analysis application verifies each and every detail with its corre-
sponding banks and validates it in the system.

Step 5: The application maintains a separate table in the database for each cus-
tomer registered.

Step 6: Using DDAS the application retrieves JSON objects from the corre-
sponding banks and produces it to the user.

Step 7: Every time the user logs into the banking analysis application the creden-
tials are authenticated by the server.

Step 8: The report is generated in a format that can be directly copy pasted into
excel sheets for performing complex arithmetic operations.

Step 9: In this way the user is able to get an idea about his/her expenses and can
control them accordingly.

IV. Results
1. The first screenshot suggests user's first bank account details.

2. The second screenshot suggests user's second bank account details.

3. The third screenshot shows the aggregated data of both the user accounts from
different banks.

V. Conclusion
So as we see there is a vast need for data management and aggregation over the
globe, based upon various domain and researches. Moreover the requirements
have become more specific and complex to be considered hence a solution is
required which yields high performance for large scale distributed data and vari-
ous data centric applications. So to overcome this we have Distributed Data
Aggregation Service (DDAS) relying on BlobSeer. DDAS ensures a high level
of performance in all aspects such as data storage and aggregation solution,
which has been explained based on the model.

So this system aims to provide a secure distributed data aggregation using
DDAS, this helps to check all the transactions at a go thereby saving a lot of time.
This also gives us an idea about where and how we are spending our money and
we can accordingly manage our transactions. Single aggregated approach is
more compatible than the previous systems and easy to use, the main issue is to
secure this system using various security algorithms. Later on it generates a
report and gives you the details about the credited and debited transaction about
different banks of different accounts.

VI. REFERENCES
1. S. Venugopal, R. Buyya, and K. Ramamohanarao, “A taxonomy of data grids for dis-

tributed data sharing, management, and processing,” ACM Comput. Surv., vol. 38,
June 2006.

2. T. Glatard, J. Montagnat, and X. Pennec, “Efficient services composition for grid-
enabled data-intensive applications,” in Proceedings of the IEEE International Sympo-
sium on High Performance and Distributed Computing, Jun. 2006, pp. 333–334.

3. B. Nicolae, G. Antoniu, L. Boug´e, D. Moise, and A. Carpen-Amarie, “Blobseer: Next-
generation data management for large scale infrastructures,” J. Parallel Distrib.
Comput., vol. 71, pp. 169–184, February 2011.

4. Florin Pop, Gabriel Antoniu, Vlad Serbanescu, Valentin Cristea, “Architecture of Dis-
tributed Data Aggregation Service” in Proceedings of the 28th IEEE International Con-
ference on Advanced Information Networking and Applications, IEEE Computer Soci-
ety, 2014.

5. G. Antoniu, L. Boug´e, D. Moise, A. Carpen-Amarie, and B. Nicolae, “Blobseer: Next-
generation data management for large scale infrastructures,” Author manuscript, pub-
lished in “Journal of Parallel and DistributedComputing”71,2(2011).

6. A. Brampton, A. MacQuire, I. A. Rai, N. J. P. Race, and L. Mathy, “Stealth distributed
hash table: a robust and flexible super-peered dht,” in Proceedings of the 2006 ACM
CoNEXT conference, ser. CoNEXT '06. New York, NY, USA: ACM, 2006, pp.
19:1–19:12.

7. F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chandra,
A. Fikes, and R. E. Gruber, “Bigtable: A distributed storage system for structured data,”
ACM Trans. Comput. Syst., vol. 26, pp. 4:1–4:26, June 2008.

8. M. R. Palankar, A. Iamnitchi, M. Ripeanu, and S. Garfinkel, “Amazon s3 for science
grids: a viable solution?” in Proceedings of the 2008 international workshop on Data-
aware distributed computing, ser. DADC '08. New York, NY, USA: ACM, 2008, pp.
55–64.

9. W. Hummer, P. Leitner, and S. Dustdar, “Ws-aggregation: distributed aggregation of
web services data,” in Proceedings of the 2011 ACM Symposium on Applied Comput-

58 International Educational Scientific Research Journal [IESRJ]

ing, ser. SAC '11. New York, NY, USA: ACM, 2011, pp. 1590–1597.

10. J. Chen, S. Sehrish, W.-K. Liao, A. Choudhary, and K. Schuchardt, “Improving the aver-
age response time in collective i/o,” in Recent Advances in the Message Passing Inter-
face, ser. LNCS 6090, 2011, pp. 71–73.

11. Ashok Vemuri, Merlyn Mitra, Anand Bhushan. “Case Study: NextGen Client Data
Aggregation and Reporting.”

Research Paper E-ISSN No : 2455-295X | Volume : 2 | Issue : 6 | June 2016

59International Educational Scientific Research Journal [IESRJ]

	Page 1
	Page 2
	Page 3

