Volume : 4, Issue : 2, FEB 2018




Fruits and vegetables are the most consumed products for sustenance as well as medicinal purposes amongst the horticultural crops. Huge consumption leads in to generation of a large amount of peel waste from fruit and vegetable-based industries, agricultural processes, marketplace and household kitchen. Waste peels naturally contain bioenzymes, carotenoids, essential oils, polyphenols, vitamins, minerals and several other valuable bioactive compounds. Therefore application of such a low-cost, easily available potential biomass for production of the value-added products has been emerged as a green step in its sustainable utilization. Such judicious usage of enormous waste peels may also restrict a big nutritional and economic loss as well as control of increasing environmental burdens due to waste dumping.


Horticultural Crops, Waste Peels, Low-Cost, Biomass, Sustainable.

Article : Download PDF

Cite This Article

Article No : 21

Number of Downloads : 82


  1. Sommer, S. G., Hamelin, L., Olesen, J. E., Montes, F., Jia, W., Chen, Q., & Triolo, J. M. (2015). Agricultural waste biomass. Supply chain management for sustainable food networks, pp 67-106.
  2. Wadhwa, M., Bakshi, M. P. S., & Makkar, H. P. S. (2015). Wastes to worth: value added products from fruit and vegetable wastes. CABI Reviews, pp 1-25.
  3. Pathak, P. D., Mandavgane, S. A., & Kulkarni, B. D. (2017). Fruit peel waste: characterization and its potential uses. Current Science, pp 444-454.
  4. Pfaltzgraff, L. A., Cooper, E. C., Budarin, V., & Clark, J. H. (2013). Food waste biomass: a resource for high-value chemicals. Green Chemistry, 15(2), pp 307-314.
  5. Aruoma, O. I., Landes, B., Ramful-Baboolall, D., Bourdon, E., Neergheen-Bhujun, V., Wagner, K. H., & Bahorun, T. (2012). Functional benefits of citrus fruits in the management of diabetes. Preventive medicine, 54, pp S12-S16.
  6. Soetardji, J. P., Widjaja, C., Djojorahardjo, Y., Soetaredjo, F. E., & Ismadji, S. (2014). Bio-oil from jackfruit peel waste. Procedia Chemistry, 9, pp 158-164.
  7. Wu, D. (2016). Recycle technology for potato peel waste processing: A review. Procedia Environmental Sciences, 31, pp 103-107.
  8. Choi, I. S., Cho, E. J., Moon, J. H., & Bae, H. J. (2015). Onion skin waste as a valorization resource for the by-products quercetin and biosugar. Food chemistry, 188, pp 537-542.
  9. Yaradoddi, J., Patil, V., Ganachari, S., Banapurmath, N., Hunashyal, A., Shettar, A., & Yaradoddi, J. S. (2016). Biodegradable plastic production from fruit waste material and its sustainable use for green applications. Int. J. Pharm. Res. Allied Sci, 5(4), pp 72-81.
  10. Sangeetha, J., Thangadurai, D., Hospet, R., Purushotham, P., Manowade, K. R., Mujeeb, M. A., Mundaragi A.C., Jogaiah S., David M., Thimmappa S.C. & Prasad R. (2017). Production of bionanomaterials from agricultural wastes. In Nanotechnology, pp. 33-58, Springer, Singapore.
  11. Arunachalam, R., & Annadurai, G. (2011). Nano-porous adsorbent from fruit peel waste for Decolorization studies. Research Journal of Environmental Sciences, 5(4), pp 366-376.
  12. Patel, S. (2012). Potential of fruit and vegetable wastes as novel biosorbents: summarizing the recent studies. Reviews in Environmental Science and Bio/Technology, 11(4), pp 365-380.
  13. Pathak, P. D., Mandavgane, S. A., & Kulkarni, B. D. (2015). Fruit peel waste as a novel low-cost bio adsorbent. Reviews in C hemical Engineering, 31(4), pp 361-381.
  14. Bhatnagar, A., Sillanpaa, M. & Witek-Krowiak A. (2015). Agricultural waste peels as versatile biomass for water purification - A review. Chemical Engineering Journal, 270, pp 244-271.
  15. Okonko, I. O., Adeola, O. T., Aloysius, F. E., Damilola, A. O., & Adewale, O. A. (2009). Utilization of food wastes for sustainable development. Electr J Environ Agric Food Chem, 8(4), pp 263-286.
  16. Raghav, P.K., Agarwal, N., & Saini, M. (2016). Edible coating of fruits and vegetables: A review. Int. J. Sci. Res. Mod. Edu., 1, pp 188–204.
  17. Sultan, N. F. K., & Johari, W. L. W. (2017). The development of banana peel/corn starch bioplastic film: A preliminary study. Bioremediation Science and Technology Research, 5(1), pp 12-17.
  18. Roy, S., & Lingampeta, P. (2014). Solid wastes of fruits peels as source of low cost broad spectrum natural antimicrobial compounds-furanone, furfural and benezenetriol. Int. J. Res. Eng. Technol, 3(7), pp 273-279.
  19. Santos, C. M., Dweck, J., Viotto, R. S., Rosa, A. H., & de Morais, L. C. (2015). Application of orange peel waste in the production of solid biofuels and biosorbents. Bioresource Technology, 196, pp 469-479.
  20. Miran, W., Nawaz, M., Jang, J., & Lee, D. S. (2016). Conversion of orange peel waste biomass to bioelectricity using a mediator-less microbial fuel cell. Science of the Total Environment, 547, pp 197-205.
  21. Xu, Y., Hanna M., & Isom L. (2008). Green Chemicals from Renewable Agricultural Biomass: A Mini Review. The Open Agriculture Journal, 2, pp 54-61.
  22. Angel Siles Lopez, J., Li, Q., & Thompson, I. P. (2010). Biorefinery of waste orange peel. Critical reviews in biotechnology, 30(1), pp 63-69.
  23. Thines, K.R., Abdullah E.C., Mubarak, N.M., & Ruthiraan M. (2017). Synthesis of magnetic biochar from agricultural waste biomass to enhancing route for waste water and polymer application: A review. Renewable and Sustainable Energy Reviews, 67, pp 257-276.