Volume : 4, Issue : 8, AUG 2018

ROLE OF ANTIMICROBIAL PEPTIDE IN PERIODONTAL DISEASE

DR. SNEHA PURI

Abstract

The development of oral biofilms and the host response to biofilm bacteria and their toxins are important factors in the development of periodontal disease. An early component of the host response is the secretion of antimicrobial proteins and peptides (AMPs) by salivary glands, oral epithelial cells and neutrophils. Antimicrobial peptide resistance has been increasingly recognized as a discriminating feature of some of periodontopathic pathogens. When Antimicrobial peptides are rendered ineffective as a component of barrier defense or phagocytic killing, remaining host microbial function may be insufficient to prevent the risk of invasion of periodontopathic bacteria produced by the Antimicrobial peptide resistance organism. Therefore, aim of this review was to present current understanding of various oral Antimicrobial peptides involving in maintaining balance between periodontal health and disease, participation of various residential periodontal cells in production of these oral Antimicrobial peptides, its role during periodontal disease as well as mechanism of development of resistance against oral Antimicrobial peptides by particular periodontal bacteria.

Keywords

Antimicrobial Peptide, Periodontal Disease, Endogenous, Cathelicidine, Defensins.

Article : Download PDF

Cite This Article

Article No : 14

Number of Downloads : 777

References

1. Ganz T, Selsted ME, Szklarek D, Harwig SS, Daher K, Bainton DF, et al. Defensins, natural peptide antibiotics of human neutrophils. J Clin Invest 1985;76(4):1427-35. 2. Selsted ME, Harwig SS, Ganz T, Schilling JW, Lehrer RI. Primary structures of three human neutrophil defensins. J. Clin. Invest.1985re;76:1436–1439. 3. Zanetti M, Gennaro R, Romeo D. Cathelicidins: a novel protein family with a common proregion and a variable C-terminal antimicrobial domain. FEBS Lett. 1995;374:1–5 4. Lehrer RI and Ganz T. Cathelicidins: a family of endogenous antimicrobial peptides. Curr. Opin. Hematol 2002;9:18–22 5. Zasloff M. Antimicrobial peptides in health and disease. N Engl J Med 2002; 347: 1199-1200. 6. Lehrer RI and Ganz T. Antimicrobial peptides in mammalian and insects host defense. Curr Opin Immunol. 1999; 11: 23–7. 7. Chertov O, Michiel DF, Xu L, Wang JM, Tani K, Murphy WJ, Longo DL, Taub DD, Oppenheim JJ. Identification of defensin-1, defensin-2, and CAP37/azurocidin as T-cell chemoattractant proteins released from interleukin-8-stimulated neutrophils. J. Biol. Chem. 1996;271:2935-2940. 8. Ganz T. Extracellular release of antimicrobial defensins by human polymorphonuclear leukocytes. Infect. Immun. 1987;55:568-571. 9. Ouellette AJ, and Selsted ME. Paneth cell defensins: endogenous peptide components of intestinal host defense. FASEB J.1996;10:1280-1289. 10. Agerberth B, Charo J, Werr J, Olsson B, Idali F, Lindbom L, Kiessling R, Jörnvall H, Wigzell H, Gudmundsson GH. The human antimicrobial and chemotactic peptides LL-37 and α-defensins are expressed by specific lymphocyte and monocyte populations. Blood 2000;96:3086–3093. 11. Frohm Nilsson M, Sandstedt B, Sørensen O, Weber G, Borregaard N, Sta°hle-Ba¨ckdahl M. The human cationic antimicrobial protein (hCAP18), a peptide antibiotic, is widely expressed in human squamous epithelia and colocalizes with interleukin-6. Infect Immun 1999;67(5):2561–2566. 12. Bals R, Goldman MJ, Wilson JM. Mouse beta- defensin 1 is a salt-sensitive antimicrobial peptide present in epithelia of the lung and urogenital tract. Infect. Immun. 1998;66:1225-1232. 13. Ganz T and Lehrer RI. Defensins. Pharmacol Ther. 1995;66: 191-205. 14. Woo JS, Jeong JY, Hwang YJ, Chae SW, Hwang SJ, Lee HM. Expression of cathelicidin in human salivary glands. Arch Otolaryngol Head Neck Surg. 2003;129:211–214. 15. Yang D, Chertov O, Bykovskaia SN, Chen Q, Buffo MJ, Shogan J, Anderson M, Schröder JM, Wang JM, Howard OM, Oppenheim JJ. Beta-defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science 1999, 286:525-8. 16. Territo MC. Ganz T, Selsted ME. Lehrer R. Monocytechemotactic activity of defensins from human neutrophils. J Clin Invest 1989; 84:2017-2020. 17. Dale BA, Kimball JR, Krisanaprakornkit S, Roberts F, Robinovitch M, O’Neal R, Valore EV, Ganz T, Anderson GM, Weinberg A. Localized antimicrobial peptide expression in human gingiva. J. Periodontal Res 2001;36:285–294. 18. Hosokawa I, Hosokawa Y, Komatsuzawa H, Goncalves RB, Karimbux N, Napimoga MH, Seki M, Ouhara K, Sugai M, Taubman MA, Kawai T. Innate immune peptide LL-37 displays distinct expression pattern from betadefensins in inflamed gingival tissue. Clin Exp Immunol 2006;146(2):218–25. 19. Dale BA and Fredericks LP. Antimicrobial peptides in the oral environment: expression and function in health and disease. Curr Issues Mol Biol. 2005;7(2):119-33. 20. Bucki R, Leszczyn´ ska K, Namiot A, Soko?owski W. Cathelicidin LL-37: a multitask antimicrobial peptide. Arch Immunol Ther Exp 2010;58(1):15–25. 21. Koczulla R, von Degenfeld G, Kupatt C, Krötz F, Zahler S, Gloe T, Issbrücker K, Unterberger P, Zaiou M, Lebherz C, Karl A, Raake P,Pfosser A, Boekstegers P, Welsch U, Hiemstra PS, Vogelmeier C, Gallo RL, Clauss M, Bals R. An angiogenic role for the human peptide antibiotic LL-37/hCAP-18. J. Clin. Invest 2003;111:1665–1672. 22. Heilborn, J. D., M. F. Nilsson, G. Kratz, G. Weber, O. Sorensen, N. Borregaard, and M. Stahle-Backdahl. The cathelicidin anti-microbial peptide LL-37 is involved in re-epithelialization of human skin wounds and is lacking in chronic ulcer epithelium. J. Invest. Dermatol 2003;120: 379–389. 23. Niyonsaba F, Someya A, Hirata M, Ogawa H, Nagaoka I. Evaluation of the effects of peptide antibiotics human beta-defensins-1/-2 and LL-37 on histamine release and prostaglandin D(2) production from mast cells. Eur. J. Immunol. 2001;31(4):1066–1075. 24. Davidson DJ, Currie AJ, Reid GS, Bowdish DM, MacDonald KL, Ma RC, Hancock RE, Speert DP. The cationic antimicrobial peptide LL-37 modulates dendritic cell differentiation and dendritic cell-induced T cell polarization. J. Immunol 2004;172: 1146–1156. 25. Lee SH, Jun HK, Lee HR, Chung CP, Choi BK. Antibacterial and lipopolysaccharide (LPS)-neutralising activity of human cationic antimicrobial peptides against periodontopathogens. Int J Antimicrob Agents 2010;35:138-145. 26. Ganz T. Defensins: antimicrobial peptides of innate immunity. Nat. Rev. Immunol 2003;3:710–720. 27. Nuding S, Zabel LT, Enders C, Porter E, Fellermann K, Wehkamp J, Mueller HA, Stange EF. Antibacterial activity of human defensins on anaerobic intestinal bacterial species: a major role of HBD-3. Microbes Infect 2009,11:384-93. 28. Yang D, Biragyn A, Hoover DM, Lubkowski J, Oppenheim JJ. Multiple roles of antimicrobial defensins, cathelicidins, and eosinophil-derived neurotoxin in host defense. Annu Rev Immunol 2004, 22:181-215. 29. Vongsa RA, Zimmerman NP, Dwinell MB. CCR6 regulation of the actin cytoskeleton orchestrates human beta defensin-2- and CCL20- mediated restitution of colonic epithelial cells. J Biol Chem 2009, 284:10034-45. 30. Krisanaprakornkit S, Weinberg A, Perez CN, Dale BA. Expression of the peptide antibiotic human beta defensin 1 in cultured gingival epithelial cells and gingival tissue. Infect. Immun. 1998;66: 4222–4228. 31. Ji S, Hyun J, Park E, Lee BL, Kim KK, Choi Y. Susceptibility of various oral bacteria to antimicrobial peptides and to phagocytosis by neutrophils. J Periodontal Res 2007;42(5):410–9. 32. Yin L, Chino T, Horst OV, Hacker BM, Clark EA, Dale BA, Chung WO.Differentialand coordinated expression of defensins and cytokines by gingival epithelial cells and dendritic cellsin response to oral bacteria.BMC Immunol. 2010 Jul 9;11:37. doi: 10.1186/1471-2172-11-37 33. Gupta S, Ghosh SK, Scott ME, Bainbridge B, Jiang B, Lamont RJ, McCormick TS, Weinberg A. Fusobacterium nucleatum-associated beta-defensin inducer (FAD-I): identification, isolation, and functional evaluation. J Biol Chem 2010;285:36523-31. 34. Panyutich AV, Szold O, Poon PH, Tseng Y, Ganz T. Identification of defensin binding to C1 complement. FEBS Lett. 1994;356(2-3):169-73. 35. Van Wetering S, Mannesse-Lazeroms SP, Dijkman JH, Hiemstra PS. Effect of neutrophil serine proteinases and defensins on lung epithelial cells: modulation of cytotoxicity and IL-8 production. J Leukoc Biol 1997;62:217–226. 36. Grigat J, Soruri A, Forssmann U, Riggert J, Zwirner J. Chemoattraction of macrophages, T lymphocytes, mast cells is evolutionarily conservedwithin the human alpha-defensin family. J Immunol. 2007 Sep 15;179(6):3958-65. 37. Yang D, Chertov O, Oppenheim JJ. Participation of mammalian defensins and cathelicidins in antimicrobial immunity: receptors and activities of human defensins and cathelicidin (LL-37). Journal of Leukocyte Biology 2001;69:691–7. 38. Scott MG, Gold MR, Hancock RE. Interaction of cationic peptides with lipoteichoic acid and Gram-positive bacteria. Infect Immun 1999;67(12):6445-53. 39. Davidopoulou S, Diza E, Menexes G, Kalfas S. Salivary concentration of the antimicrobial peptide LL-37 in children. Arch Oral Biol. 2012;57(7):865-869. 40. Ouhara K, Komatsuzawa H, Shiba H, Uchida Y, Kawai T, Sayama K, Hashimoto K, Taubman MA, Kurihara H, Sugai M. Actinobacillus actinomycetemcomitans outer membrane protein 100 triggers innate immunity and production of β-defensin and the 18-kilodalton cationic antimicrobial protein through the fibronectin-integrin pathway in human gingival epithelial cells. Infect Immun 2006;74:5211-20.