Volume : 3, Issue : 9, SEP 2017
OCCURRENCE OF FLAME RETARDANTS IN WATER, SLUDGE AND SEDIMENT IN THE CZECH REPUBLIC
TOMÁŠ OCELKA, MIROSLAV FLORIÁN, JI?Í OCEÁNSKÝ, MICHAEL VÍT, CHRISTOPHER HARMAN, TEREZA KA?EROVÁ, PETR KA?ER, ROMANA KURKOVÁ
Abstract
Flame retardants (FR) are compounds added in large quantities to the commercially sold products in order to increase their fire safety. Brominated (BFR) and organophosphate (PFR) FR represent the most frequently used FR and at the same time, the most frequently monitored due to their bioaccumulative properties and consequent health risks. In order to assess these risks, it is necessary to clarify the ways that FR are spread from products into the environment and human organism. Therefore, broad scale of methods for products screening (reported elsewhere) in various environmental matrices was carried out in the Czech Republic for a large variety of BFR and PFR (in 226 samples mostly 39 substances were analysed). As one identified pathway of human exposure to FR is from municipal sewage sludge, via soil and sediments, into plants and food, the current study will focus on the first steps in this. Measurements were performed at the following locations: at the output from municipal wastewater treatment plants (WWTPs) using passive sampling devices (PSDs), in sewage sludge at these WWTPs, in soils, and in pond sediments
PBDE were detected at low concentrations in pond sediments. The behaviour of individual congeners in the soil varied, depending on the number of bromines. The future development of the environmental contamination by FR is difficult to predict because of the replacement of previously widespread FR, such as PBDEs, hexabromocyclododecane, or polybrominated biphenyls, due to the banning or restriction of production by legislation. Although the production of some FR has been terminated, the contamination may continue and increase significantly, as products with a high content of FRs begin to be disposed of. For these reasons, it is necessary to continue with environment monitoring of "classical", and newly produced FR.
Keywords
Flame Retardants; Soil Contamination; WWTP; Sludge; Sediment, Czech Republic.
Article : Download PDF
Cite This Article
Article No : 13
Number of Downloads : 749
References
1. Alaee, M., Arias, P., Sjödin, A., and Bergman, A. (2003). An overview of commercially used brominated flame retardants, their applications, their use patterns in different countries/regions and possible modes of release. Environment International, 29, 683–689. 2. Alvarez, D. A., Petty, J. D., Huckins, J. N., Jones-Lepp, T. L., Getting, D. T., Goddard, J. P., et al. (2004). Development of a passive, in situ, integrative sampler for hydrophilic organic contaminants in aquatic environments. Environmental Toxicology and Chemistry, 23(7), 1640-1648. 3. Arkoosh M. R., B. D., Dietrich J., Anulacion B. F., Ylitalo G. M., Bravo C. F. (2010). Disease susceptibility of salmon exposed to polybrominated diphenyl ethers (PBDEs). Aquat. Toxicol., 98, 51. 4. Bergqvist, P. A. (2000). SPMD (Semipermeable membrane devices) as a new, innovative method for quantitative measurement of lipophilic compounds in aquatic and terrestrial environment. (Vol. 1). ExposMeter AB, Trehorninger 34, SE-922 66, Tavelsjo, Sweden: P.A.Bergquist. 5. Booij, K., Hofmans, H. E., Fischer, C. V., & Van Weerlee, E. M. (2002). Temperature-Dependent Uptake Rates of Nonpolar Organic Compounds by Semipermeable Membrane Devices and Low-Density Polyethylene Membranes. [doi: 10.1021/es025739i]. Environmental Science & Technology, 37(2), 361-366, doi:10.1021/es025739i. 6. de Carlo, V. J. (1979). Studies on brominated chemicals in the environment. Ann. N. Y. Acad. Sci., 320, 678–681.
7. de Wit, C. A. (2002). An overview of brominated flame retardants in the environment. [doi: DOI: 10.1016/S0045-6535(01)00225-9]. Chemosphere, 46(5), 583-624. 8. Dishaw, L. V., J Macaulay, L., Roberts, S. C., & Stapleton, H. M. (2014). Exposures, mechanisms, and impacts of endocrine-active flame retardants. Current Opinion in Pharmacology, 19(0), 125-133, doi:http://dx.doi.org/10.1016/j.coph.2014.09.018. 9. Eriksson P., J. E., Fredriksson A.: Environ. (2001). Brominated flame retardants: a novel class of developmental neurotoxicants in our environment? Health Persp., 109, 903. 10. European Flame Retardants Association. Flame retardant types and applications. (2004). http://www.cefic-efra.com/. 11. European Chemical Agency. https://echa.europa.eu/substance-information/-/substanceinfo/100.033.766. Accessed 1.2.2017. 12. An Exposure Assessment of Polybrominated Dipheyl Ethers (2010). USEPA (United States Environmental Protection Agency)(378). 13. Feren?ík, M., Medek, J., & Chýlková, J. (2016). Comparison of river water monitoring using spot water sampling and continuous monthly exposed passive sampling utilising SPMD and POCIS samplers. IPSW. 14. Florián, M. (2016). Kontrola a monitoring cizorodých látek v potravních ?et?zcích, zpráva za rok 2015. ÚKZÚZ, Brno. 15. Hale R. C., A. M., Manchester-Neesvig J. B., Stapleton H. M., Ikonomou M. G (2003). Polybrominated diphenyl ether flame retardants in the North American environment. Environ. Int., 29, 771. 16. Harman C, A. I., Vermeirssen EL (2012 ). Calibration and use of the polar organic chemical integrative sampler--a critical review. Environ Toxicol Chem, 31(12), 2724-2738. 17. Hassanin A., B. K., Meijer SN., Steinnes E., Thomas GO, Jones KC (2004). PBDEs inEuropean background soils: levels and factors controlling their distribution. Environ. Sci. Technol., 38, 738-745. 18. Hites, R. A. (2004). Polybrominated diphenyl ethers in the environment and in people: A meta-analysis of concentrations. Environmental Science & Technology, 38(4), 945-956. 19. Hörold, S. (1999). Phosphorus flame retardants in thermoset resins. Polym. Degrad. Stab.(64), 427–431. 20. http://www.dioxin20xx.org/ohc_database_search.htm.
21. Huckins, J. N., Petty, J. D., Orazio, C. E., Lebo, J. A., Clark, R. C., Gibson, V. L., et al. (1999). Determination of Uptake Kinetics (Sampling Rates) by Lipid-Containing Semipermeable Membrane Devices (SPMDs) for Polycyclic Aromatic Hydrocarbons (PAHs) in Water. [doi: 10.1021/es990440u]. Environmental Science & Technology, 33(21), 3918-3923, doi:10.1021/es990440u. 22. Jhon F. Narváez Valderrama, K. B., Francisco J. Molina and Ian J. Allan (2016). Implications of observed PBDE diffusion coefficients in low density polyethylene and silicone rubber. Environmental Science: Processes & Impacts(Issue 1). 23. Kazda, R., Hajslová, J., Poustka, J., & Cajka, T. (2004). Determination of polybrominated diphenyl ethers in human milk samples in the Czech Republic: Comparative study of negative chemical ionisation mass spectrometry and time-of-flight high-resolution mass spectrometry. Analytica Chimica Acta, 520(1-2), 237-243, doi:DOI: 10.1016/j.aca.2004.04.069. 24. Ko?í, V. (2012). Hexambromcyklododekan a životní prost?edí. Chemicke Listy, 106, 1116 - 1121. 25. Kuriyama S. N., W. A., Fidalgo-Neto A. A., Talsness C. E., Koerner W., Chahoud I. (2007). Developmental exposure to low-dose PBDE-99: tissue distribution and thyroid hormone levels. Toxicology, 242, 80. 26. Law R. J., A. C. R., de Boer J., Covaci A., Herzke D., Lepom P. (2006). Levels and trends of brominated flame retardants in the European environment. Chemosphere, 64, 187. 27. Lee E., K. T. H., Choi J. S., Nabanata P., Kim N. Y., Ahn M. Y. (2010). Evaluation of liver and thyroid toxicity in Sprague-Dawley rats after exposure to polybrominated diphenyl ether BDE-209. J. Toxicol. Sci., 35(4), 535-545. 28. Legler, J. (2008). New insights into the endocrine disrupting effects of brominated flame retardants. Chemosphere, 73, 216-222. 29. Lucio G. Costa, G. G. ( 2011). Is decabromodiphenyl ether (BDE-209) a developmental neurotoxicant? Neurotoxicology, 32(1), 9-24. 30. Martínez-Carballo, E., et al. (2007). Determination of selected organophosphate esters in the aquatic environment of Austria. Science of the Total Environment. Science of The Total Environment, 388, 290-299. 31. McGoldick, D., et al. (2014). Organophosphate flame retardants and organosiloxanes in predatory freshwater fish from locations across Canada. Environmental Pollution, 193C, 254-261.
32. McPherson, A., Thorpe, B., Blake, A. (2004). Brominated Flame Retardants in Dust on Computers: The Case for Safer Chemicals and Better Computer Design. Clean Production Action Report. 33. Ocelka, T., Oceánský, J., Kurková, R., Vít, M., Matuška, O., Harman, C., et al. (2017). Flame retardants: screening of products on the market in the Czech Republic in press. 34. Stockholm Convention. www.pops.int. Accessed 1.2.2017. 35. Szabo, D. T., Richardson, V. M., Ross, D. G., Diliberto, J. J., Kodavanti, P. R. S., & Birnbaum, L. S. (2009). Effects of perinatal PBDE exposure on hepatic phase I, phase II, phase III, and deiodinase 1 gene expression involved in thyroid hormone metabolism in male rat pups. Toxicol. Sci., 107, 27-39. 36. Van den Eede, N., Dirtu, A. C., Ali, N., Neels, H., & Covaci, A. (2012). Multi-residue method for the determination of brominated and organophosphate flame retardants in indoor dust. Talanta, 89(0), 292-300, doi:http://dx.doi.org/10.1016/j.talanta.2011.12.031. 37. van der Veen, I., & de Boer, J. (2012). Phosphorus flame retardants: Properties, production, environmental occurrence, toxicity and analysis. Chemosphere, 88(10), 1119-1153, doi:http://dx.doi.org/10.1016/j.chemosphere.2012.03.067. 38. Zhang, Z., Hibberd, A., & Zhou, J. L. (2008). Analysis of emerging contaminants in sewage effluent and river water: Comparison between spot and passive sampling. Analytica Chimica Acta, 607(1), 37-44, doi:http://dx.doi.org/10.1016/j.aca.2007.11.024.