Volume : 8, Issue : 5, MAY 2022





Article : Download PDF

Cite This Article

Article No : 2

Number of Downloads : 173


  1. Nuland SB. Doctors : the biography of medicine. 1st ed. New York: Knopf; 1988.
  2. Kissin I. A concept for assessing interactions of general anaesthetics. Anesth Analg. 1997; 85:204–210.
  3. Woodbridge PD. Changing concepts concerning depth of anaesthesia. Anaesthesiology. 1957;18:536–550.
  4. Eger EI., 2nd Age, minimum alveolar anaesthetic concentration, and minimum alveolar anaesthetic concentration-awake. Anaesthesia & Analgesia. 2001;93:947–953
  5. Forman SA. Awareness During General Anaesthesia: Concepts and Controversies. Seminars in Anaesthesia, Preoperative Medicine and Pain. 2006;25:211–218.
  6. KD Tripathi,7th edition pg (374,375)
  7. Grasshoff C, Drexler B, Rudolph U, Antkowiak B. Anaesthetic drugs: linking molecular actions to clinical effects. Curr Pharm Des. 2006;12:3665–3679.
  8. Solt K, Forman SA. Correlating the clinical actions and molecular mechanisms of general anaesthetics. Curr Opin Anaesthesiol. 2007;20:300–306.
  9. Smith C, McEwan AI, Jhaveri R, et al. The interaction of fentanyl on the Cp50 of propofol for loss of consciousness and skin incision. Anaesthesiology. 1994;81:820–828.
  10. Kuizenga K, Wierda JM, Kalkman CJ. Biphasic EEG changes in relation to loss of consciousness during induction with thiopental, propofol, etomidate, midazolam or sevoflurane. Br J Anaesth. 2001; 86:354–360.
  11. Goto T, Nakata Y, Ishiguro Y, et al. Minimum alveolar concentration-awake of Xenon alone and in combination with isoflurane or sevoflurane. Anaesthesiology. 2000;93:1188–1193.
  12. Anderson RE, Jakobsson JG. Entropy of EEG during anaesthetic induction: a comparative study with propofol or nitrous oxide as sole agent. Br J Anaesth. 2004;92:167–170.
  13. Rampil IJ, Kim JS, Lenhardt R, et al. Bispectral EEG index during nitrous oxide administration. Anesthesiology. 1998;89:671–677.
  14. Mashour GA, Forman SA, Campagna JA. Mechanisms of general anesthesia: from molecules to mind. Best Pract Res Clin Anaesthesiol. 2005;19:349–364.
  15. Campagna JA, Miller KW, Forman SA. Mechanisms of Actions of Inhaled Anaesthetics. New England Journal of Medicine. 2003;348:2110–2124.
  16. Husain SS, Ziebell MR, Ruesch D, et al. 2-(3-Methyl-3H-diaziren-3-yl)ethyl 1-(1-phenylethyl)-1H-imidazole-5-carboxylate: a derivative of the stereo selective general anaesthetic etomidate for photolabeling ligand-gated ion channels. Journal of Medicinal Chemistry. 2003; 46:1257–1265.
  17. Janssen PA, Niemegeers CJ, Marsboom RP. Etomidate, a potent non-barbiturate hypnotic: Intravenous etomidate in mice, rats, guinea-pigs, rabbits and dogs. Arch Int Pharmacodyn Ther. 1975;214:92–132.
  18. Antkowiak B, Rammes G. GABA(A) receptor-targeted drug development -New perspectives in preoperative anesthesia. Expert Opin Drug Discov. 2019 Jul;14(7):683-699.
  19. Chau PL. New insights into the molecular mechanisms of general anaesthetics. Br J Pharmacol. 2010 Sep;161(2):288-307.
  20. Löscher W, Rogawski MA. How theories evolved concerning the mechanism of action of barbiturates. Epilepsia. 2012 Dec;53 Suppl 8:12-25.
  21. Emmanouil DE, Quock RM. Advances in understanding the actions of nitrous oxide. Anesth Prog. 2007 Spring;54(1):9-18.
  22. Plested AJ , Wildman SS, Lieb WR, Franks NP (2004)
  23. Persson J. Wherefore ketamine? Curr Opin Anaesthesiol. 2010;23:455–60.
  24. Quinlan JJ, Homanics GE, Firestone LL. Anaesthesia sensitivity in mice that lack the beta3 subunit of the gamma-aminobutyric acid type A receptor. Anaesthesiology. 1998;88:775–780.
  25. Deng J, Lei C, Chen Y, Fang Z, Yang Q, Zhang H, Cai M, Shi L, Dong H, Xiong L. Neuroprotective gases--fantasy or reality for clinical use? Prog Neurobiol. 2014 Apr; 115:210-45.
  26. Scheiermann P, Herzog F, Siebenhofer A, Strametz R, Weberschock T. Intravenous versus inhalational anaesthesia for pediatric inpatient surgery - A systematic review and meta-analysis. J Clin Anesth. 2018 Sep;49:19-25.